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Editors' Preface 

This volume of Lecture Notes in Physics contains the proceedings of the "81. WE- 
Heraeus-Seminar" of the "Dr. Wilhelm Heinrich Heraeus und Else Heraeus-Stiftung", 
entitled ';Aktuelle Entwicklungen in der Erforschung der relativistischen Gravita- 
tion" (;'Recent Developments in Relativistic Gravity Research"). The seminar, held 
at the Physikzentrum Bad Honnef, Germany, on 2-6 September 1991, was intended 
to bring together scientists from Germany with research interest in experimentally 
or observationally oriented relativistic gravity, and particularly to inform younger 
scientists about recent developments in this field. The selected topics were: 

Gravitational Lensing; 
Relativistic Celestial Mechanics, Astrometry, Geodesy; 
Metrology; 
Gravitational Waves; 
Compact Objects, Black Holes; 
Tests of Newton's Law of Gravity; 
Matter Wave Interferometry. 

Constraints on strong-field relativistic gravity obtained recently were not inclu- 
ded in the talks delivered at the seminar. For more details the reader is referred to 
the following two articles: 
T. Damour and G. Schgfer, New Tests of the Strong Equivalence Principle Using 
Binary-Pulsar Data, Phys. Rev. Lett., 66 (1991) 2549. 
J.H. Taylor, A. Wolszczan, T. Damour and J.M. Weisberg, Experimental Cons- 
traints on Strong-Field Relativistic Gravity, Nature, 355 (1992) 132. 

The seminar was attended by 60 people; 26 participants presented 31 talks of 
which 20 lasted 50-60 minutes. The proceedings give a balanced record of the semi- 
nar. However, not all talks have been included in these proceedings. The following 
list gives papers which were presented at the seminar but which have been published 
elsewhere: 
F.V. Kusmartsev, E.W. Mielke and F.E. Schunck, Gravitational Stability of Boson 
Stars, Phys. Rev. D, 43 (1991) 3895; Stability of Neutron and Boson Stars: A New 
Approach Based on Catastrophe Theory, Phys. Lett. A, 157 (1991) 465. 
H.-P. Nollert, U. Kraus, A. Rebetzky, H. Herold, T. Maile and H. Ruder, Relativistic 
Light Bending Near Neutron Stars, Proc. 23rd ESLAB Syrup. on Two Topics in 
X-Ray Astronomy, Bologna, 13-20 Sept. 1989 (ESA SP-296, Nov. 1989), p. 551. 
H.-P. Nollert, U. Kraus, H. Ruder and H. Herold, Relativistic Light Deflection and 
Light Curves of X-Ray Pulsars, Proc. of The Sixth Marcel Grossmann Meeting on 
General Relativity, ed. by H. Sato (World Scientific, Singapore 1992). 
N. Salifi, Influence of Time Dependent Gravitational Fields on Superconducting Os- 
cillatory Circuits, Astron. Nachr., 307 (1986) 335. 

Garching J. EhIers 
Jena G. Schiifer 
July 1992 
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Gravitational lensing 

J / i rgen  E h l e r s  a n d  P e t e r  S c h n e i d e r  

Max-Planck-Institut fiir Astrophysik, Karl-Schwarzschild-Str. 1, W-8046 
Garching bel Mfinchen, FRG 

1 I n t r o d u c t i o n  

1.1 His tor ica l  R e m a r k s  

In his Opticks, published in 1704, Sir Isaak Newton raised the question: "Do not 
Bodies act upon Light at a distance, and by their action bend its Rays, and is not this 
action strongest at the least distance?" In view of the dominance of the corpuscular 
conception of light in the 18th century it is strange that the possible bending of light 
by gravity was computed only as late as 1784. Stimulated by his friend John Michell, 
Henry Cavendish then calculated the bending of light by a sphericM body of mass 
M. Assuming light corpuscels to move like material particles, he found the deflection 
angle to be 

2GM R8 
& - -  - -  (1 )  

C2r  7" ' 

provided the photon's speed is c at infinity and its closest distance r from the center 
of the body is much larger than Rs, the length now called the Schwarzschild radius of 
the body. Michell had discovered that a body of radius R < Rs would not be visible 
to a distant observer, and this and related remarks motivated Cavendish to calculate 
the bending angle. These findings appear to be the earliest gravito-optical effects ever 
contemplated. 

In 1801 the Bavarian astronomer Johann yon Soldner, unaware of Cavendish's 
work, after studying Laplace's rediscovery of "black holes" in 1795 again found (1) 
and concluded that the effect, if it existed at all, was practically negligible on account 
of the accuracy with which angles could be measured at his time. (Recall that the 
first stellar parallaxes, which are comparable in size, were measured in 1838 only.) 

The question of gravitational light deflection was taken up again by Albert Ein- 
stein. In 1907 and again in 1911 he also found the law (1), guided solely by his principle 
of equivalence. Finally in 1915, in possession of his field equation he noted, almost in 
passing, that space curvature doubles the bending so that (1) has to be replaced by 

2R, 
a - , (2) 

r 

the so-called Einstein angle. The law (2) has been verified by VLBI measurements to 
within an accuracy of 0.003 (la).  



Several physicists, among them Lodge 1919, Eddington 1920, Chwolson 1924, 
Mandl 1936, Einstein 1936, soon realized that light deflection may lead to multi- 
ple images and changes of apparent brightness. The observability of such effects was 
considered very unlikely, though, due to the small probability for sulTicient align- 
ment of sources and deflectors, taken to be stars in our galaxy. However, in 1937 in 
two remarkably prescient papers Fritz Zwicky considered the possible astronomical 
importance of gravitational light bending by external galaxies and concluded that 
"the probability that nebulae which act as gravitational lenses will be found becomes 
practically a certainty". Though correct, the verification of this prediction had to wait 
until 1979 when D. Walsh, R.F. Carswell and R.J. Weymann tentatively interpreted 
a "double quasar" as a pair of images of one quasar and within one year A. Stockton 
and P. Young et al. identified the lensing galaxy. Since then more than 10 cases of 
multiply imaged quasars and several gravitationally lensed images (arcs, rings) of ex- 
tended sources have been found. Even before - -  and, of course, with increased activity 
after - -  these discoveries the theory of gravitational lenses has been and is elaborated; 
one of the pioneers is Sjur Refsdal, now at the Hamburg Observatory, who pointed 
out, in particular, cosmological applications of the gravitational lens effect. 

1.2 R e m a r k s  on the  as t rophys ica l  significance of  g rav i t a t iona l  lensing 

The study of gravitational lensing is of interest for several reasons, among them: 
successful models of gravitational lens configurations based on (2) provide evidence 
for the operation of the law of gravity on galactic (and possibly supergalactic) scales; 
galaxies as gravitational lenses act as natural telescopes permitting to see otherwise 
invisible, very distant objects; 
light deflection can explain unusual observed shapes of cosmic objects such as arcs 
and rings; it can be used to determine masses of deflecting, visible and dark matter; 
microIensing, i.e. time-dependent differential light deflection by compact objects 
within the observed light bundle may help to elucidate the size and structure of 
the energy source of QSOs, and it may be used to determine masses of the deflecting 
compact objects. 
Finally, lensing may possibly be used to determine cosmological parameters, in partic- 
ular the value of the Hubble constant, and statistical lens theory provides, inter alia, 
inhomogeneity - -  corrections to the idealized observational relations ( m -  z, diameter 
- -  z etc.) which would hold in a homogeneous universe. 

The following sections are intended as an introduction to and overview of the, 
by now quite extensive, field of gravitational lensing. For more details, we refer to 
a forthcoming book (Schneider, Ehlers & Falco 1992, hereafter SEF) the conference 
reports Moran, Hewitt & Lo (1989), Mellier eL al. (1990), Kayser & Schramm (1992), 
and the excellent review article by Blandford & Narayan (1992, hereafter BN), and 
papers quoted in those sources. The notation used here follows that of SEF. 



2 Foundations. The deflection mapping 

2.1 Heuristic derivation of the lens equation 

Consider a si tuation as sketched in the spacetime diagram Fig.1. A source emits, 
continually or in burst  events $1, $2, . . .  light which propagates in ray b u n d l e s /1 ,  
/2, I t ,  . . .  to an observer where it arrives at events O1, 02, . . .  The  various rays are 
deflected by intervening mat te r  at D; therefore the observer will see several images 
corresponding to these bundles, which have fluxes $1, $2, . . .  and are separated by 
angular distances 812, . . .  A change of luminosity of the source at $1 will be seen in 
the images with a t ime delay Ata2. 

S 

$2 

I2 

D st\ /o 

e12 02 

t  t,2 

01 

Fig. 1. A source S emits light at events $1, $2 which is received by the observer at events 
O1, 02. At 02, the observer sees two images of the source, separated by an angle 812. The 
signal emitted at $1 arrives at O~ with a delat At12 relative to its arrival at 01 

The  source and deflector redshifts, z8 and za, and the angular separations 81d, 
82d of the images from the deflector may also be observable, as also the shapes, light 
distributions, spectra, and polarizations of the images. The pr imary aim of lens theory 



is to determine relations between the observables 012, Oid, Z~tl2, Sl, $2, Zs, Zd, the 
image shapes etc., and the (hypothetical) properties of the source, the deflector and 
the assumed cosmic background parameters H0,/?0, q0, & (clumpiness, see below). 

It should be clear that such relations can be obtained only under simplifying 
assumptions. Before stating them and entering a detailed discussion of the bits and 
pieces of theory needed to obtain the desired relations, it is useful to infer - -  or rather 
to guess - -  the form of the lens equation simply from Fig.2. It shows the locations S, 
/)  and O of a source S, a deflector D and an observer O. 
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Fig. 2. Spatial projection of a lensing situation as described in the text 

Without the gravitational field of D, light would proceed from S to 0 along the 
dashed line. In presence of the field, each light path is curved, but in small-angle 
approximation it may be approximated by the broken line S_TO. Light f r o m / )  to 0 
is (nearly) unaffected by D's field. The deflection angle at I is represented by the 
difference between the unit tangent vectors of the incoming End outgoing raypaths, 



& := ein - eout. The similar triangles f , / ) ,  S' and f ' ,  D', S are contained in the lens 
plane and the source plane, respectively, both orthonal to the optical axis O£)f )  r. The 
figure shows that the angular separation 0 of the source's image, f,  from the deflector 

is related to the (unobservable) unperturbed separation/3 of S f rom/ )  by the lens 
equation 

Dd~ &(O) (3) 
/ 3 = 0 - - 5 -  7 

D~ and Das denote the distances of S from 0 and 1), respectively. To obtain eq.(3), 
use has been made of 

S I  I = Dds& , D ' S  = D~/3 , D ' I  I = D~O (4) 

Since the figure is supposed to represent a process in an expanding universe containing 
an inhomogeneous matter distribution, it is not obvious which 3-dimensional space is 
displayed in Fig.2, and which metric is used to define distances, angles and straight 
lines. This geometry must be such that the paths of light rays are geodesics, that angles 
equal the physical angles, and distances axe related to angles by (4). Moreover, the 
dependence of the deflection angle & on the mass distribution of the deflector has to 
be found, the "timeless" description has to be augmented by finding the time-delays 
referred to above, and the unobservable distances have to be related to observable 
redshifts. All this will be done below. 

2.2  G e o m e t r i c a l  optics  and  F e r m a t ' s  pr inciple  

2.2.1 The WKB approximation 

Before carrying out the programme just outlined, we recall some facts about short-  
wave asymptotic solutions of Maxwell's equations in an arbitrarily curved spacetime, 
to put the following considerations on a firm basis. 

The (real) phase S of a locally approximately plane and monochromatic electro- 
magnetic wave 

F ~  = 27~e {eiSk[~A~]} (5) 

with frequency 4-vector k,~ = -S~,  in a matter-free region obeys, in leading WKB- 
approximation, the eikonaI equation 

g~ZS,~SZ = 0 , (6) 

and its complex amplitude As is transported along the rays, defined by 

dx a 
- k ~ = - g " ~ S , z  , (7) 

dv 

according to the transport equation 

DA~ 
_ - !  k ; Ao (8) 

dv 2 

These statements form the basis of geometrical optics. Eq.(7) implies the rays to be 
null geodesics, and (8) specifies how energy-momentum and polarization are trans- 
ported. 



Since, for a rapidly changing phase S, the frequency measured by an observer 
with 4-velocity U ~ is w = - ~  = - S , a  dz" - k a U  ~, the frequency ratio between a - ~ - =  

source and an observer is given by 

(k. u), 
1 -F z . . . .  (9) 

( k .  U)o 

where, according to (7), k s is parallel on a ray. 

2.2.2 Fermat's principle 

For the purposes of lens theory the most useful way to characterize light rays, i.e. null 
geodesics, is Fermat ' s  principle.  Its role for gravitational lensing was recognized by 
one of us (PS) in 1985. The general form of this principle as given below was stated 
by I. Kovner in 1990; its proof is due to V. Perlick in 1990. The principle says: a 
smooth null curve 3' connecting a source event S to an observer worldline l is a light 
ray if, and only if, its arrival time r on l is stationary under all first-order variations 
of 3' within the set of smooth null curves from S to l, 

6T = 0 (10) 

To prove this, one considers a family x~(v ,  ~) of null curves connecting S to l, 0 < 
v < 1, [e] < ¢0. Then, with a dot denoting covariant differentiation along the curves, 
one obtains by the ususal integration by parts, 

1 / 1  . 
o = = ( x J x ) v = l  

i .e . ,  

~0 
1 

- 2 . 6 x ~ d v  , 

~0 
1 

2~6x  ~ = ~ 6 z ~ d v  

Here, the lef t -hand side refers to the end point of the unvaried curve x ~ ( v ,  0), 6x ~ 
denotes the variation of that  end point, and the integrand is to be evaluated at (v, 0). 
If u ~ denotes the unit tangent of l at the end point, 6x ~ = 8~" u ~, thus 

~0 
1 

5 r ( u ~ 2  ~) = ~ 6x ~ dv (11) 

Since u a is timelike and ~ is lightlike, u~ ~ ~ 0. The proof, therefore, reduces to the 
assertion that  the r ight-hand side of (11) vanishes for all admissible variations if, and 
only if, x a ( v ,  0) is geodesic. The necessity of that  condition is obvious, for if x~ (v ,  O) 
is geodesic, we may choose v to be an affine parameter so that  ~a = 0. The proof 
of sufficiency is trickier. One has to show that  there are sufficiently many admissible 
variations 6x ~ such that ,  with a suitable choice of v, i s = 0. This proof will not be 
reproduced here, see Perlick (1990) or SEF. 

For a stat ic  spacetime, i.e. if the metric has the special form 

d s  2 -~ e 2U/c2 c 2 d t  2 - e - 2 U / c 2  d l  2 ( 1 2 )  



with U and the conformally rescaled spatial metric dI 2 = 7~bdx a dx b independent of 
the time coordinate t, Fermat's principle reduces to 

cbt = f~e-2V/C2dl , (13) 

where "~ denotes the spatial projection of a light ray and 5t denotes the variation of 
the arrival time; now the end points have to be kept fixed under variations of the 
spatial curve ~. Eq.(13) has the form of the classical Fermat principle for a medium 
with index of refraction 

n = e -2U/c2 (14) 

The variational principle (13) may be rephrased as follows: The spatial paths of light 
rays in a static spacetime are the geodesics of 3-space with respect to the (Riemaa- 
alan) optical metric e-4U/c27ab corresponding to the Lagrangian 

°)  = ; (15)  

now e a dz" and a, b 1,2, 3. The resulting Euler-Lagrange equation = d--T", = 

De ~ =---2 ( 7 ~ b _ e %  b) DbU 
dl c 2 

o r  
De 2 
dl = D ± l ° g n = - - - c 2 D ± U  , (16) 

states that the curvature of the ray-path is equal to the component of D log n or- 
thogonal to the ray direction. Apart from the fact that now the metric is Riemannian 
and D is its covaria~t derivative, this is exactly the law of classical geometrical optics 
(see, e.g., Sommerfeld 1959, §48A). 

2.3 The  def lec t ion  angle 

We are now in a position to derive the light deflection by a nearly static, isolated 
mass distribution which produces a weak gravitational field. Then, U in (12) may be 
taken to be the Newtonian gravitational potential, and in linear approximation (with 
respect to U/c 2) to Einstein's field equation, dl 2 is Euclidean, so that 

ds e =  l + - f i -  dt 2 -  1 - - ~ -  dx e (17) 

Defining the deflection "angle" & as the difference between the asymptotic "in" and 
"out" values of the ray tangent e, we obtain from (16) 

& = ~ V ± U  dl (18) 

Under realistic conditions the deflection is very small, I&i < 10 -4, say. For a point 
mass, Y(x) = - G M / I x l ,  and integration over the unperturbed ray x(/) = ~ + le with 
impact vector ~ _1_ eia leads to the Einstein angle 



4aM 

Let us now assume not only that the total deflection angle is very small, but that the 
extent of the deflecting mass in the direction ein is so small that the value of V.LU on 
the actual ray differs but little from that on the unperturbed, straight ray. Then, one 
may integrate over the unperturbed ray in (18); thus for such a geometrically thin lens 
the deflection angle is equal to the sum of the Einstein angles of its mass elements. 
Accordingly, all mass elements in an infinitesimal cylindrical tube parallel to e have 
the same impact vector. We may therefore project all mass elements of the lens onto 
a plane orthogonal to e, passing through some (rather arbitrary) "centre" of the lens, 
and characterize the deflector by the resulting surface mass density Z(~). Thus, 

4 G / i t  (~ - ~')Z(~')  d2~, 

where the integral is over the lena plane just introduced, and { is a 2-dimensional 
vector in that plane. This equation, which may be rewritten in terms of the deflection 
potential 

~({) = -~-4G f Z({ ')  In ~ { - {' d2{ ' 

a s  

= , ( 2 0 )  

is a basic relation of lens theory. (Here the distance Dd of the deflector from the 
U observer has been introduced for dimensional reasons only.) Note that the two c~- 

contributions in (17), the time dilation term and the space curvature term, contribute 
equally to &. This causes Einstein's angle to be twice "Newton's". 

The foregoing consideration shows that, for the case where source, deflector and 
observer are part of an isolated, nearly static system with a weak gravitational field, 
the lens equation (3) with (19), (20) holds. In this case Fig.2 should be interpreted as 
referring to the 3-dimensional background x-space with Euclidean metric dx 2 which 
occurs in (17). 

2.4 The  t ime  delay  

2.4.1 ~LocaP treatment 

Next we wish to calculate the arrival time delay for a ray from the source S to the 
observer O caused by the gravitational field of the deflector D. According to (17) and 
d82 = 0, the delay is 

A t = - l A l -  2 . /  c y Udl (21) 

It consists of a geometrical and a potential term. Let us for the moment concentrate 
on the latter, the Shapiro delay. A straightforward calculation shows that, under the 
assumptions made already - -  small deflection angles, weak, static field, thin lens - -  
we have approximately 

1 ^  
Atpot = - -  k~ +const .  (22) 

C 



The first term agrees with the deflection potential whose argument is given by ( =  
DdO, and the second term depends on the locations of S, D and O, but not on the ray 
considered which is specified by ~, the position of the image in the lens plane (Fig.2). 
Eq.(22) holds not only for "physical" rays deflected by the "true" angle (20), but for 
all "kinematically possible" rays proceeding along a broken line SIO.  This fact can 
be used to rederive the lens equation (3) by means of Fermat's principle: Calculating 
- -  here for the case of a Euclidean background space - -  Al (which we leave to the 
reader) and extremising the At of eq.(21) with respect to variations of the position 
of the deflection point I using (22) and (20), indeed reproduces (3). 

2.4.2 The time delay in an expanding universe 

In real lensing situations, deflectors and sources axe at large cosmological distances; 
thus the foregoing "local" treatment needs to be generalised. For this purpose one 
assumes that the spacetime metric can on average be represented by a Robertson- 
Walker metric 

d~ ~ = c~dt ~ - R~(t) d~ i , (23a) 

&r2k = du 2 + S~(u)(dO 2 + sin s ~ de 2) , (23b) 

sin u 1 
Sk (u )=  u i f k = O  , (23c) 

k sinh u -1 

and that the actual metric deviates substantially from (23a) only in "small" regions 
around lumps of matter such as galaxies. One may thenagain use Fig.2 to obtain the 
lens equation, provided one now interprets (i) S, D, O, I and the lines connecting 
them as the projections of source, deflector, light rays into the "comoving 3-space" 
with metric (23b), and (ii) distances to be angular diameter distances. Indeed, with 
these interpretations eqs.(4) remain valid except for the common factor R~ -1 on the 
right-hand sides, whence (3) holds again. 

To obtain the potential time-delay in the cosmological case, we use the fact that 
the significant, ~-dependent part of Atpot in (22) arises near the deflector and there- 
fore amounts, at the observer, to the red-shifted value 

atpo,  = - 1  ( l + z d ) ¢ +  c o n s t  (24) 
C 

It remains to compute the geometric time delay. It is due to the path-difference be- 
tween the perturbed and unperturbed rays whose 3-space projections may be taken, 
for the present purpose, to be geodesics. Rewriting the RW metric (23) in the confor- 
really static form 

ds = (d ,  - d0- ) 

w e  see that CZ~tgeo m = .ROZ~qgeo m = RO(0-ds  .3 V 0"d - -  o"s) (see Fig.3). C o n s i d e r  f i r s t  t h e  

case k = 1. Then, from spherical trigonometry, 

COS 0" 8 = COS O'da COS O" d -- sin 0-ds sin 0-d COS 



6 
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Fig. 3. Spatial projection of the world lines of source, observer and deflection event near 
world line of the lens, into the comoving 3-space of an Robertson-Walker universe model. 
Shown are also the spatial paths of unlensed (~C)) and deflected (~ I0 )  ray paths 

After a little calculation this gives, for & << 1, 

Altgeo m _ R0 sin rids sin ad &2 
c 2 sin a8 

If the a-dis tances are expressed in terms of the angular diameter distances, 

Dds = Rs sin ad~ , Dd = Rd sin o" d , 

Ds = Rssinas , 
( 8  - fl) sin a~ = & sin ads , 

there results for the total time delay 

{ DaDs ( o - t 3 ) 2 - ~ ( ~ ) }  + const. cat  = (1 + Zd) 

The same expression holds for k = - 1  and k = O. 
It is convenient to introduce a dimensionless deflection potential k~ via 
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~(~) = 2 n s $ ( o )  , 

f d.¢ (2a) ~(o)= - - ~ - l n  0 - 0 '  I , 

where d m ' / M  = D2d S ( tg ' )aaa ' /M represents the fraction of the source's mass "visi- 
ble" by the observer in the solid angle d20 t. 

The result can be written as 

cnt = $(0 ,~)  + const. , (26a) 

[ DdDds (0 - ~)2 _ 2Rs~(o)}  (26b) = (1 + Zd) [ ~ _ 

As in the "local" case, these formulae for A t  hold for all "kinematically possible" light 
rays along S I O .  Fermat's principle, specialized to ~ = O, therefore again gives the 
lens equation (3), 

2Dds 0~  
= 8 DdDs Rs O0 (26c) 

The factor ~DaD, is due to the RW-geometry while R~ ~ accounts for the local 
deflection. 

The unobservable distances in (26) can be related to red shifts of source and 
deflector, if a cosmological model is used. Since we are concerned with processes 
occurring well after hydrogen recombination, we may use an "on average Friedmarm" 
dust model and take, for simplicity, A = 0. 

Under plausible assumptions discussed in detail in SEF, one can derive the follow- 
ing formula: 

DdDds c 1 
( l + z d )  Dd~ = -~O " Xd--  Xs ' (27) 

where H0 denotes the Hubble constant and X(Z; 120 ; 6l) is a function depending on the 
redshift z, the density parameter P-0 of the universe and the smoothness parameter 
which measures which fraction of the mass is smoothly distributed, i.e. not bound in 
galaxies or clusters. The function X can be computed for any statistically homogeneous 
Friedmann model. (The angular diameter distances appearing in (27) and used in 
computing X are those introduced by Dyer&: Roeder(1973).) 

2.4.3 Summary 

The result of these considerations can be summarized as follows: 
The time delay for rays S I O  is given by 

c a t  = t q -  const. , 

where 

(2s) 

c (0 - ~)~ 2as(1 + zd)~(o) (29) 
$ ( 0 , ~ ) -  2H0 x d - x s  

is called the Fermat potential. The images of a source at fl are located at the stationary 
points of the Fermat surface B --+ ¢(B, fl); they are obtained by inverting the lens 
equation 
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0~ 
fl = B 2RsH________~Oc (1 + Zd) (Xd -- Xs) 08 

Hence, the angular separation Oij = Oi - Oj between any two images is 

_ _  /oo o° oij  - 2RSHOc (1 + z~) (xe  - x , )  ?-g (0~) - ?-g (0~ 

and the time delay is 

(30) 

, (3~) 

- (~(8i)  - ~(Sj))  } (32) 

(The dot between 3-vectors indicates Euclidean inner products.) The distortion of an 
image near 8 is given by the inverse #ij of the 2 × 2 Jacobian matrix 

913 
DO - (Zi~) (33) 

of the map (30). While this distortion is, of course, not observable, the relative dis- 
tortion of two images at 01, 02, given by #ij(Oa) fljk(O2), may be observable. In the 
above equations, the dimensionless deflection potential # is given, in terms of the mass 
distribution of the deflector, by (25), and the X-Values refer to za and zs, respectively. 

3. Magnification, odd-number theorem and magnification 
theorem 

The results derived above concern geometrical and kinematical variables. What can 
be said about fluxe~ of deflected light bundles? The form (5) of the electromagnetic 
field tensor implies that the corresponding energy-momentum tensor, averaged over a 
period or wavelength, has the same form as that of a stream of photons with number 
4-current density N ° oz k a, each photon carrying 4-momentum pc, = hkC~: 

T ~  ~ = N o p ~  

Moreover, as long as there are no interactions of the photons with matter, Te~3;~ = 0, 
whence photons are conserved, 

Na;a = 0 

From this one concludes (see, e.g., SEF) that the ratio I,o/w a of the specific intensity 
by the cube of the circular frequency w of a light bundle is observer independent 
(locally Lorentz inwariant) and constant along the central ray of the bundle. The 
frequency shift of a distant source is (practically) not affected by lensing, since each 
photon looses as much energy in climbing out of the potential well of the deflector 
as it gained when falling into it. Hence, I~ is not affected by lensing, so that the 
(monochromatic or integrated) observed flux Sw = I~A.~ does change just like the 
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solid angle Aw which a small area at the source subtends at the observer, due to 
differential deflection. Thus, leasing changes the flux by the magnification (factor) 

# = Idet(/zij)l = Idet(/3ij)l -a (34) 

whose ratio for two images gives the observable flux ratio or relative magnification. 
The results derived so far imply two general theorems about lensing: 

The number of images of a point source produced by a transparent mass distribution 
acting as a lens, is always odd (Burke 1981), and 
at least one of the images is amplified (# > 1) relative to the case where there is no 
lens between source and observer, other things being equal (Schneider 1984). Proofs 
of these assertions are given, e.g. in SEF. 

Both of these theorem also apply for more complicated situations than the ones 
considered here, where a single optically thin deflector acts on the light rays. The 
odd-number theorem was treated by McKenzie (1985) for a fairly general spacetime. 
The magnification theorem also applies in a general spacetime, owing to the focusing 
equation. For the case that a light ray is deflected by several geometrically thin matter 
distributions between source and observer, both theorems have been proved in the 
framework of gravitational lensing in Seitz and Schneider (1992). 1 

4. An example: The point-mass lens 

Let us specialize the general relations considered so far to the case of a spherically 
symmetric lens of negligible size, formally idealized as a point-mass. Then it suffices to 
consider the lens map in the plane containing source, deflector and observer. Eq.(30) 
then reduces to 

/3 = 0 2R~Dd-----2 0 -1 (35) 
DdDs 

see Fig.4. The image positions of a source at/3 are given by 

where 

i( j ) 
/3+ 4 02+/32 (36) 

ao ~ ~  (37) 
= V D-Tb-: 

is the (angular) Einstein radius, the value of 0+ = -0_  for /3 = 0. The angular 
separation of the images, 

= 0 + - 0 _ = ~ / 4 a 0  ~+/32 , (38) A0 

1 The basic idea for the proof of the odd-number theorem is to consider the Poincare index of 
the vector field 0-/3, and applying the index theorem. The magnification theorem considers 
light rays where the light travel time has an absolute minimum; such light rays cannot have 
passed through a caustic; otherwise, an even shorter light ray could be constructed. Minimal 
light travel time and the non-negativity of the surface mass density of the deflectors then 
yields the desired result. 
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is at least 2a0, and the unlensed position fi is 

f i=0++0_  

Moreover, by (36) and (27), 

a02 = 10+O_l - 2RsH-------2° (1 + Zd)(X d - -  Xs) 
e 

and the relative magnification turns out to be 

2 

:= ~- . L7"7~2 

(39) 

, (40) 

Use of (32) and some algebra leads to the following expressions for the arrival time 
delay A t  = t_  - t+: 

(42) 
= .a~ (1 + z,~) (~,~/~ - ~,-~/~ + in v) 

C 

Finally we note that the Einstein radius can be inferred from 

A8 
a0 = ~,1/4 + z,-1/4 (43) 

Z$ 

Zd 

S 

I° I .  

th 

Dds 

~Dd 

Ds 

Fig. 4. Lensing by a point mass at S with images I+, I_ and observer at O 

Therefore, in this simple model situation, we see: 
c 2 (i) the mass M = ~-~ Rs of the lens can be found from the observables At, z,t, 0+, 

0_ or alternatively from At, Zd, v; 
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(ii) the product R~Ho - -  and therefore, with (i), the Hubble constant - -  can be ob- 
tained from 0+, 0_, zd, z~, provided one knows the cosmological density parameter 
/20 and clumpiness parameter & which enter X; 

(iii) three point-mass lensing observations would give the three lens masses as well as 
the cosmological parameters H0, J?0, &; 

(iv) the combination of (40) and (43) provides an equation between the three observ- 
ables 0+, 0_, u, and thus a test of the model. 

The case considered here is admittedly very idealized, but it nevertheless indicates 
the possibility of using gravitational lens observations to determine masses and cosmo- 
logical parameters, and the equations provide orders of magnitude and typical scales. 
Of cource, the analysis becomes much more involved for extended lenses whose mass 
distribution has to be determined too. Clearly, resolved images of extended sources 
contain much more information than images of point sources. 

It is perhaps useful to insert here a remark about so-called Einstein rings, first 
predicted by Chwolson in 1924, as mentioned above, the case where source, lens and 
observer are colinear. Rotational symmetry about the line of sight then implies that, 
according to geometrical optics, a point source appears as a ring to the observer. 
However, in this ideal case infinitely many light rays with exactly equal path length 
intersect at the observer, and therefore diffraction and interference invalidate geomet- 
rical optics. In contrast, any real source is extended and not strictly monochromatric. 
Then, (i) those parts of a wave train emitted from a source point located not on, but 
near to the axis, which reach the observer from directions corresponding to the two 
geometrical images of the source point, arrive at the observer separated in time, if 
the time delay exceeds the coherence time; and (ii) waves from different source points 
are incoherent. Therefore, unresolved, extended sources, nearly aligned with deflector 
and observer, produce nearly the same ring images which geometrical optics predicts 
for the idealized case. 

5 S i n g u l a r i t i e s  o f  l e n s  m a p p i n g s  

5.1 T h e  lens equa t i on  as L a g r a n g e a n  m a p p i n g  

The lens mapping, eq.(30), was obtained assuming that the ':angles" fl, 0 are very 
small; therefore we may take/3 and 0 to vary in small neighbourhoods of the origins of 
two copies of ]R 2. To study these mappings mathematically it is convenient to consider 
them as maps from the whole of ~2 to ]R2L remembering that they are "realistic" 
near the origins only. Absorbing factors into ~P and ¢ and changing notation, we write 
the lens map 

f :  IR 2 --. ]R 2 

n o w  a S  

x -+ y = x - V!P(x; p) = ~Y (2x2  -- kV(x, p ) )  (44) 

Here p denotes a set of N parameters characterizing a family of lensing situations, 
p E IR N. Examples of such parameters are the core radii of galaxies, their ellipticities, 
the separation between lens components, redshifts, and the distance ratio Dds/D~. 

Alternatively, the source position y corresponding to an image x can be charac- 
terized by 
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1 
V ¢ = 0 ,  ¢ =  ~ ( x - y ) 2 - ~ p ( x ; p )  (45) 

(As before, the gradient operator refers to x.) 
To avoid confusion, we shall use the terminology appropriate to the physical mean- 

ing of the symbols; thus y is called the source position, x the image position (although 
according to mathematical terminology x is the pre-image, y the image variable for 
the map f defined by (44)). 

One basic question of lens theory is: How many images exist for a given source, 
i.e. what is the set f - l ( y ) ,  and how does it depend on y? For localized sources 
the deflection potential ~ increases like In r, the deflection angle decreases like r -1 . 
Therefore, as one would expect, the map f is bijective for large [x[. Also, f is surjective, 
i.e. for any source position y, there is at least one image x such that y = f(x) .  Thirdly, 

if the Jacobian matrix (0°A(-x) is invertible at x, the map f is locally invertible at x .  

Therefore, if y moves inwards from infinity along a curve, there will for a while be a 

until possibly a point is reached where det (DD---~x) = 0. The set of all unique image x 

points x where this equation holds is called the critical set, its image the caustic set of 
f .  In the theory of singularities of maps one studies the behaviour of f and f -1  near 
critical and caustic points, respectively, in general. Lens theory is concerned with the 
special case of gradient maps, see eq.(44). 

Y raph of f 

X 

Fig. 5. The graph of the lens mapping illustrates the dependence of the number and position 
of images on the source position 

One may study such maps from several points of view, two of which we mention. 
Firstly, one may consider f as defining a 2-surface in IR 4 = {(x, y)}. On this 2- 

surface, the symplectic form 12 = dyiAdxi vanishes; thus the 2-surface is a Lagrangean 
submanifold of (lR 4,/2). The lens map may then be viewed as a projection of this 2- 
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surface onto the y-plane, see Fig.5. This is useful since it gives a "quasi-intuitive" 
insight into the way how f - l ( y )  changes with y, and since such Lagrangean maps 
have been studied extensively by mathematicians. 

In the second view, based on (45), one thinks of x ---+ ¢(x, y; p), for each fixed 
value of the control parameters (y, p), as a surface in (x, ¢)-space. For large x, this 
arrival time surface approaches the paraboloid ¢ = ½(x - y ) 2 .  The images, in this 
context also called states, then correspond to those points where the tangent plane 
to the surface is parallel to the plane V¢ = 0. (This second view corresponds to the 
so-called "static model" of catastrophe theory, which is popular also in discussions of 
phase transitions.) 

By eqs.(44) and (45), the Jacobian matrix of the lens mapping has components 

Oy~ 
= ~gik : g i k  - -  ~ t i k  (46) 

OXk 

Since for x ~ cx~, k~ik ---+ O, the critical set is bounded and, of course, closed, hence 
compact. The caustic set is compact and in addition of measure zero (Sard's theorem). 

At a regular, i.e. non-critical image x (°), the magnification # (eq.(34)) is finite, 
and near x (°), f is locally diffeomorphic. At a critical image x (°), the magnification is 
formally infinite; however, if instead of a point source an extended source is considered 
or if wave optics is taken into account, the "physical" magnification becomes finite, 
but in general large. 

It follows from the above that if y moves, the number of its images can change 
only if y enters or crosses the caustic set. Thus knowing the critical and caustic sets 
provides a qualitative overview of a lens mapping. 

5.2 Generic singularities of lens mapp ings  

Let us write D := det(¢~k). At a critical image x (°), the rank of A := (¢~k) can be 
1 or 0. In the first case one can have, at x (°), either VD # 0 or VD = 0. The only 
stable critical points, i.e., those which remain critical under arbitrary, small changes 
of the deflection potential, are those with rank A = 1 and VD # 0. These are the 
only critical points which occur generically, i.e. in "almost all" lens mappings. 

Generically, the critical set of a lens mapping consists of finitely many dosed, 
smooth, compact curves without end points. Let T (°) denote the tangent of a critical 
curve at x (°). Then, in general, AT (°) # 0, but at isolated points it may happen that 
AT (°) = 0. Thus, a critical curve in general consists of open arcs where AT # 0, 
separated by points at which AT = 0. The images of critical curves, the caustics, 
have cusps (spikes) at those points which correspond to critical points with AT = 0. 

Whenever a source point crosses a caustic where the latter is smooth, two new 
images appear on opposite sides of the critical curve; the corresponding segments of 
critical curves which consist of "double images", are called folds. Near and inside a 
cusp, a source point has three images which merge when the source reaches the cusp, 
and only one image survives if the source has passed through the cusp. The point on 
the critical curve where this happens, i.e. where the tangent of the critical curve is 
in the kernel of A, is also called a cusp point of the lens mapping. Both folds and 
cusps are stable, i.e., they are preserved under all small deformations of the deflection 
potential, and smooth maps ]1% 2 --+ ]R 2 have no other kinds of stable singularities 
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than folds and cusps (Whitney 1955). Near a fold, the amplification diverges like the 
inverse square root of the distance from the caustic; near a cusp, it diverges even 
stronger. These facts can be established by approximating the Fermat-potential at a 
critical point by a polynomial of suitably high order and then studying the resulting 
representative mapping. 

If one considers not a single lens mapping, but a family of those depending on some 
parameters p, the critical curves and caustics depend on the value of p. Qualitative 
changes of the pattern of critical curves and caustics, called metamorphoses ,  can 
occur for particular values p(0) and at special points (x (°), y(0)). These higher-order 
singularities are also useful to survey lensing models; they are needed too to study 
caustics and self-intersections of null cones of spacetimes, but we shall not pursue 
this topic here, but refer the reader to Chap. 6 of SEF (see also Blandford & Narayan 
1986). 

6 O b s e r v e d  g r a v i t a t i o n a l  l e n s  p h e n o m e n a  

Having outlined the theoretical foundations and concepts, we now turn to the astro- 
physical aspects of gravitational lensing, starting by describing some of the cosmic 
sources for which the lensing phenomenon plays an essential role: multiple images 
of QSOs have been observed, ring-shaped radio sources are generally believed to be 
created by the lens action of a foreground galaxy, and long, narrow arcs in Clusters 
of galaxies are thought to be highly distorted images of background galaxies. We de- 
scribe these classes of objects in turn, ending this section with a brief account on 
microlensing and its observations. 

6.1 Mul t ip l e  QSOs  
6.1.1 0957+561 

The discovery of the first gravitational lens system came about by identifying the 
optical couterpart of a source in a radio catalog (for the history of this discovery, 
see Walsh 1989). The system 0957+561, the famous 'double quasar', consists of two 
QSO images, separated by 6.1 arcseconds. The spectra of these images are essentially 
indistinguishable, except for a slight reddening of the B image relative to the A 
image; in particular, they share the redshift of zs = 1.41 to within the errors of 
its determination. Thus, the optical spectroscopy yielded strong indications for the 
source to be gravitationally lensed. For this to be the case, a massive galaxy (with an 
estimated mass of 1012M®) must be responsible for the image splitting. In fact, this 
galaxy was found independently by two groups (Stockton 1980, Young et al. 1980); it 
has a redshift of about Zd = 0.36 and is the brightest member of a compact cluster of 
galaxies. With such a massive galaxy in the foreground of a QSO, gravitational leasing 
of the background source is unavoidable, making this a secure example of the lensing 
phenomenon (at least if we stick to the cosmological interpretation of the redshift as 
a distance indicator). 

Nevertheless, initially doubts were raised against the leasing interpretation, for at 
least two reasons: if this was a lens system, why are only two images observed, whereas 
theory predicts an odd number of images (Sect. 4)? Second, the radio structures of 
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Fig. 6. A VLA map of the gravitational lens system 0957T561~ taken at 6 cm wavelength. 
The compact components A and B coincide with the optical QSOs, and component G is 
situated at the position of the main lens galaxy. In contrast to component B, component 
A has a jet and extended radio lobes (C, D, and E). The separation between A and B is 
6.1arcseconds (from Roberts et al. 1985) 

the two images appear very different (see Fig. 6). If A and B axe indeed images of 
the same source, should they not share a similar radio morphology? Both concerns 
were justified at the time of discovery of this system, since lens theory up to this 
time mainly dealt with fairly special mass distributions, which cannot be applied to 
this particular lens system. The usefulness of the odd number theorem is limited by 
the fact that nothing is said about the flux ratios of the images. The third image 
can indeed be present but be too weak for being observable. In fact, component G in 
Fig. 6 cannot be the third image of the QSO, since it is resolved (whereas A and B 
are unresolved) and its radio spectrum is steeper than that of the two QSO images; 
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hence, G is probably the radio image of the lens galaxy. If a third image, which 
would be expected to lie very close to the center of the galaxy, is present as part of 
component G, its flux must be less than 2% of that of image A for being compatible 
with the VLBI observations. The fact that A has extended radio structure such as 
a jet and outer lobes, whereas B has not, is explained by  placing the source close to 
a caustic formed by the lens: the compact component is situated inside the caustic 
curve and thus multiply imaged, whereas the extended source components are outside 
the caustic and have a single image only. Thus, image A is a - distorted - image of 
the whole source. This interpretation is supported by a slight extension of B in the 
direction of G, so that a small part of the jet is multiply imaged. 

VLBI observations of 0957+561 (Gorenstein et al. 1988) have erased all doubts 
about the lensing nature of this system. Both compact components (A and B) share 
the same compact radio morphology, consisting of a compact core (unresolved at mil- 
liarcsecond resolution) and two jet components. The VLBI maps of the two images 
can in fact be related to each other by a linear transformation, as expected from lens 
theory: the scale of the VLBI source is much smaller than the scale of the deflector 
mass distribution, so that the mapping should be locally linear (the linear transfor- 
mation between the two images is the product of the distortion matrix at one image 
and the inverse of the distortion matrix at the other image, see the end of Sect. 2; 
the four components of this relative distortion matrix have been determined by the 
observations and provide strong constraints on any model for this system). Most im- 
pressive, the parities [= sign of the determinaflt of the Jacobian matrix (33)] of the 
two VLBI images are different, i.e., one is a distorted mirror image of the other, as 
predicted by all lens models for 0957+561. 

An intrinsic flux variation of the source should show up in both images, but occur 
with a time delay equal to the difference in the light travel time along the two cor- 
responding light rays [see (26)], thus providing the possibility of measuring the time 
delay. Fortunately, 0957+561 is a variable source, both optically and in the radio, 
though not very strongly variable. Flux measurements of both components have been 
taken for more than a decade, so it appears to be fairly easy to obtain the time delay 
from these data. Unfortunately, this is not the case: the cross correlation of these two 
light curves turns out to be fairly involved, since the optical data axe interrupted by 
monthly (observations avoid full moon) and yearly gaps (the source is observable for 
about eight months per year), and random gaps due to bad weather. Therefore, some 
kind of interpolation of the light curves of both images is needed before cross correlat- 
ing them. The result of the correlation depends fairly strongly on the method used; it 
is therefore not surprising that several different values for At have been claimed in the 
literature. Recently, a more sophisticated statistical method was used to obtain At 
from both, the optical and the radio data (Press, Rybicki ~ Hewitt 1992a,b), yielding 
a result of 540 ± 12 days. 

The determination of the Hubble constant from the measurement of the time delay, 
as discussed above, requires knowledge on the mass distribution of the lens. However, 
in this respect the system 0957+561 is a fairly complicated one, since the cluster in 
which the main lensing galaxy is embedded makes a significant contribution to the 
deflection. Unfortunately, basically nothing is known about the mass distribution of 
the cluster. The construction of lens models proceeds by assuming that the deflection 
caused by the cluster varies slowly over the region of the size of the image separation; 
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the contribution by the cluster is then described by the lowest order terms of a Taylor 
expansion of the deflection angle around the center of the main galaxy (the validity 
of this approach can be questioned, see Kochanek 1991). A 'plausible' ansatz for the 
shape of the mass distribution in the lens galaxy is chosen, compatible with what is 
known about the matter distribution in elliptical galaxies, and the parameters of the 
model are varied to obtain a match of all observables with the model. Needless to say 
that such an approach yields models which are far from being unique. Even worse, 
there are invariance transformation of lens model parameters which have no impact 
on the observables (Gorenstein, Falco & Shapiro 1988; e.g., adding a uniform mass 
sheet to the lens acts like a Gaussian thin lens and is equivalent, in terms of the lens 
model, to decreasing the separation between lens and source). This degeneracy can 
be broken by obtaining additional observables; in the case of 0957+561, the velocity 
dispersion of the lens galaxy (a measure for the lens mass) has been observed, thus 
allowing the degeneracy to be broken. It thus seems that a point estimate of the 
Hubble constant is possible from this lens system. Taking the lens model from Falco, 
Gorenstein &= Shapiro (1991), assuming that the velo city dispersion measures the t oral 
mass of the lens galaxy, and taking a cosmological model with 12.0 = 1, one obtains a 
value for H0 which is less than 50 km s -1 Mpc -1 (the 'best' value being closer to 40). 
The uncertainties, however, are still considerable. First, as already mentioned, the lens 
model is not unique, and one can construct equally good models which would yield 
different values for H0. Second, it is not clear whether the velocity dispersion of the 
stars probes the total matter of the lens galaxy; if the stellar mass is more centrally 
concentrated than the dark matter in the galaxy, the effective dispersion can be larger 
than the measured value by up to a factor ~/1.5. Third, additional inhomogeneities 
around the line-of-sight to the QSO can perturb the propagation of light and thus 
affect the lens mapping; in this respect it is interesting to know that spectroscopy 
of the galaxies around 0957+561 indicate that they do not all belong to a cluster at 
Zd = 0.36, but that there seems to be an additional concentration at a higher redshift 
of about 0.54. 

With all the difficulties and uncertainties mentioned, it might appear that the 
determination of the Hubble constant from lensing will not yield more accurate values 
than the classical method of ~climbing up the distance ladder'. However, it should be 
stressed that the latter method measures the Nubble constant from nearby objects, 
whereas lensing permits to obtain measurements of H0 on truly cosmic scales. It is 
by no means evident that both methods should yield the same results, in fact: since 
the probability that a galaxy (on which an observer is situated to measure H0) is 
placed in an overdense region of the universe, the local Hubble expansion is likely to 
be slower than the mean Hubble expansion, yielding a systematically higher value of 
H0 from local measurements. This was demonstrated quantitatively by Turner, Cen 

Ostriker (1991). Hence, measuring H0 from lensing might provide the only way to 
obtain that value of H0 which enters the Friedmann equations. 
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6.1.2 2237+0305 

As a second example for a multiply imaged QSO, we display in Fig. 7 an isophotal 
plot of the system 22372k0305, which was discovered in the course of the CfA redshift 
survey of galaxies (Huchra et al. 1985). A redshift Zd = 0.04 spiral galaxy shows broad 
emission lines in the core, indicative of a QSO at redshift z8 = 1.69. More detailed 
imaging showed that the QSO is split into four images, situated nearly (though not 
completely) symmetrically around the center of the galaxy. Spectroscopy of the four 
individual images revealed that they indeed belong to the same source; their spectra 
differ only in the continuum colour, which is easily understood by differential red- 
dening caused by the interstellar medium of the lensing galaxy. Owing to the small 
redshift of the lens in this system, the light distribution of the deflector can be mapped 
in great detail. Assuming a constant mass-to-light ratio across the galaxy, a lens model 
can be constructed with just one single parameter (this mass-to-light ratio), which 
has been shown be consistent with the observed positions of the images; hence, a 
constant mass-to-light ratio is at least compatible with the observations (however, 
this lens model is again far from unique, see Kent &= Falco 1988, Kochanek 1991). The 
nearness of the lens in this system makes this also an ideal target for investigating 
microlensing (see below). 

6.1.3 Other cases; discussion 

Presently, we know about seven firm cases of multiply imaged QSOs, and an additional 
handful of good candidates for lensed QSOs. Verification of a candidate system to be 
truly a gravitational lens system is fairly difficult in practice. 'Similarity' of QSO 
spectra is not a quantitative measure, and the 'lensing community' has learned its 
lesson from systems like 1145+071, where two QSOs with very similar optical spectra 
pretend to be an ideal lensing candidate, but radio observations have shown that only 
one QSO is a radio source, with very strict upper limits on the radio flux ratio: it is 
almost certainly not a lens. In order for a system to be called a 'lens system' instead of 
'candidate system', one or more of the following criteria should be satisfied: (1) more 
than two images with similar spectra, (2) agreement of optical and radio flux ratio, 
(3) a candidate deflector between or very near to the images. The spectra need not be 
identical in all details, since they can be modified by differential absorption in the lens, 
intrinsic variability of the source (together with the time delay), and microlensing (see 
below). Of the seven known multiple QSOs, four are quadruples, two are doubles, and 
there is one triple QSO (2016+112). The large fraction of quadruples has not been 
predicted by fairly simple models, since the probability for a lens to cause four images 
is smaller by a factor of about 10 than for forming double images; it can only be 
understood by accounting for selection effects (amplification bias, see below). The two 
doubles both have a visible lensing galaxy. The triple system 2016+112 is not very 
well understood yet; it appears that a generic successful model must allow for multiple 
deflection, i.e., two deflectors at different redshifts (for which there is indication from 
the objects in its field). Of the four quadruples, two have the images arranged nearly 
symmetrically (as in 2237+0305), and the fluxes of the four images are comparable; 
in the other two systems, two of the four images are very Close together, and much 
brighter than the other two, indicating that these images are close to a critical curve. 
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Fig. 7. Optical isophotes of the gravitational lens system 2237+0305, where a QSO with 
redshift zs = 1.69 is split into four images by a foreground spiral galaxy at redshift zd = 0.04. 
The maximum image separation in this system is 1.8 arcseconds (from Yee 1988) 

Except for the ill-understood system 2016+112, all multiply imaged QSO systems 
have an even number  of images, in contrast  to what theory would predict. The  canon- 
ical explanation for the absence of the odd image is its large demagnification: a light 
bundle traversing the inner core of the lensing galaxy is so much overfocused that  
the resulting flux of the corresponding image is very small and undetectable.  The  
characteristic value for the surface mass density of a lens (or critical density) is 

c 2 Ds 

Z~r = 4G DdDds ; (47) 

a lens with surface mass density larger than 27cr in at least one point can produce mul- 
tiple images of a source which is sufficiently well aligned. Conversely, for a centrally- 
condensed axially-symmetric mass distribution to be able to form multiple images, 
the central surface mass density Z0 must exceed Zcr. If Z0 = n0Scr, the central image 
will have a magnification of about  # = (e;0 - 1) -1 , which can be very small if the core 
radius of the deflector is small. None of the observed multiple QSOs requires a model 
with finite core size. 
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6.2 Rings 

As w e  have seen in Sect.4, if a source is exactly aligned with an axisymmetric de- 
flector of sufficient strength, a ring-shaped image of the source occurs. If the source 
is extended, the exact alignment is no longer necessary for a ring to appear; ra ther ,  
the size of the inner - or tangential - caustic must be smaller than  or comparable 
with the source size. Ring-shaped images were predicted by Chwolson in 1924. Five 
of them were discovered during the last few years, and we will here describe the two 
best-studied ones. All observed ring-shaped images appear  in the radio and have been 
discovered in radio surveys. 
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Fig. 8. A 6 cm radio map of the ring MGl131+0456 (from Hewitt et M. 1988) 

6.2.1 MGl131+0456 

The first ring discovered is MGl131+0456 (Hewitt et al. 1988), of which a 6 cm map 
is displayed in Fig.8. Besides the ring, the map shows several compact components  
(A, B and C in the figure). Optical information about  this source is sparse. Its optical 
counterpart  is a faint extended object, but  it is unclear whether it corresponds to the 
radio source or to a possible lens galaxy. Spectroscopy reveals two spectral breaks 
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which were preliminarily assigned to redshifts of 0.85 and 1.13 and might indicate the 
redshifts of source and lens. The lack of any strong emission line shows that the source 
does not belong to a class of objects known in the Galaxy, and its radio spectral index 
as well as its optical color are compatible with the appearance of a radio galaxy. 

The strongest argument for 1131+0456 being a gravitational lens system is derived 
from a theoretical study by Kochanek et al. (1988), who successfully tried to recon- 
struct the image from a gravitational lens model, which was chosen to be an elliptical 
galaxy. The applied reconstruction technique simultaneously yields the model param- 
eters of the lens and the intrinsic intensity distribution of the source. It might appear 
on first sight that such a method could reproduce nearly any image morphology, but 
this is it not the case: since observations are available for two radio frequencies as 
well as for the flux polarization, the s a m e  lens model must apply to these three inde- 
pendent maps, and does indeed! (For instance, if the compact components A and B 
would not lie on opposite sides of the ring, but would subtend an angle of, say, ~/2 as 
seen from the center of the ring, it would be impossible to reconstruct all three maps 
from a single gravitational lens model.) Moreover, the reconstructed source bright- 
ness distributions are typical for radio sources, strengthening the lens interpretation. 
Recently, Hammer & Le Fevre (1991) have applied deep optical imaging, the result 
indicating a ring-like structure with an opening in the ring coinciding in position with 
the opening seen in the 2 cm radio map, thus providing direct observational evidence 
for the lensing nature of this source. 

6.2.2 MG1654+1346 

An even better example for a radio ring is provided by the source MG1654+1346, 
which is displayed in Fig.9. Here, a radio galaxy is seen with its radio core - which 
conincides with the optical image of a QSO (Q) at a redshiff of z~ = 1.7 - and its two 
radio lobes (B and C), one of which is deformed into a ring by the galaxy G, showing 
a redshift of Zd = 0.25. This gravitational lens system is ideal for determining the 
mass of the galaxy G inside the ring-shaped image. 

Ring images in general constrain the lens model better than multiple point images, 
since the maps of extended images contain more information than just image position 
and magnification ratios of point images. The reconstruction technique mentioned 
above has been recently extended to account for finite resolution of the observations 
(Kochanek and Narayan 1992), providing a powerful tool for fitting lens models and 
reconstructing intrisic brightness profiles of sources. Still, one should remember that 
lens models obtained from ring systems are also not unique; the most robust param- 
eters of such models are the lens mass inside the ring image, the ellipticity of the 
matter distribution and its major axis. 

6.3 L u m i n o u s  arcs 

Although observed earlier, the announcement of R. Lynds and V. Petrosian in 1986 to 
have observed '% hitherto unknown type of spatially coherent extragalactic stucture", 
located in clusters of galaxies, "with narrow arc-like shape [and] enormous length", 
and independently by G. Soucail and coworkers in Toulouse, provided us with a new 
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type of gravitational lens systems. Whereas several different explanation for the oc- 
currence of such arcs have been given initially, models which put the source of the arc 
in the cluster of galaxies in which they are observed were falsified once the redshift 
of the arc in A370 (Fig. 10) was measured to be z8 = 0.724, whereas the cluster has 
a redshift zd = 0.37. Today we know about 10 such giant luminous arcs, A370 being 
the best studied of them. 

Presently, the nature of the arcs is interpreted as galaxies at high redshift be- 
ing gravitationally lensed by foreground clusters. The highly elongated shape of the 
images is due to the distortion by the lens mapping, with the source being situated 
close to a cusp singularity of the lens. (There are also "straight arcs", which are most 
conveniently interpreted as sources lying close to so-called beak-to-beak singularities, 
one of the types of metamorphoses mentioned in Sect. 5.) Note that the length of the 
arc in A370 is about 21 arcseconds, and its width is roughly 2 arcseconds, so that the 
deformation by lensing is indeed huge; correspondingly, the total flux of the image is 
much larger than that of the unlensed source. It is only this high magnification which 
allows spectroscopy of such intrinsically faint extended sources - clusters of galaxies 
forming arcs provide us with (cheap) 'natural telescopes'. 

Detailed modeling of arcs in several clusters of galaxies has provided us with some 
crucial information about the mass distribution in clusters: First, the amount of dark 
matter, inferred previously from studies of the dynamics of cluster galaxies, agrees 
with that obtained from the lens models (as was the case for galaxy-mass lenses, 
lens models for arcs are far from unique, with the mass inside a circle of radius 
given by the distance of the arc from the center of the cluster being the most robust 
parameter). Second, the dark matter is not tied to individual galaxies, but spread 
more evenly throughout the clusters. Third, the mass inside clusters of galaxies must 
be distributed more compactly than previously thought; otherwise, clusters would not 
be able to form caustics and thus multiple images. Once a complete sample of clusters 
(selected, say, by their X-ray flux; it seems that the X-ray luminosity of a cluster is a 
good indicator of its lensing power) is scrutinized for the occurrence of arcs, statistical 
information about the mass spectrum of clusters, their core radii etc. will be available 
(see Bergmann 1992, Wu and Hammer 1992). 

If a cluster is sufficiently compact to form such spectacular long arcs, it will also 
deform other background sources lying close to the direction to the center of the 
cluster. Examples of this effect can be seen in Fig. 10, where various elongated blue 
images are seen (A1 through A6). These images share the property that they are 
elongated in the tangential direction with respect to the cluster center. Such tangential 
elongation is expected from light deflection. Indeed, the redshift of component A5 has 
been measured to be zs = 1.305 which thus stems from a background source. Since 
the density of faint background galaxies is very large (Tyson 1988), these sources 
can in principle be used to ~map' the mass distribution of compact clusters. This is 
not a trivial task, both from observation and theory. Very deep images have to be 
obtained in order for the source density to be sufficiently high. Sources (galaxies) are 
intrinsically not round, and therefore intrinsic ellipticity has to be disentangled from 
lens-induced deformation. This clearly is an ambitious statistical problem, treated in 
considerable depth in the literature (e.g., Kochanek 1990, Miralda-Escude 1991), but 
has been demonstrated to work in practice (Tyson, Valdes ~= Wenk 1990). In principle, 
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F i g .  10. The cluster of galaxies A370, with the luminous arc s i tuated to the south of the  
center of this image, and various blue, elongated images, labeled A1 through A6 and B1 
through B3. The redshift of the cluster is Zd = 0.37, the redshift of the arc is z~ : 0.724, 
and the arclet A5 has redshift z~ : 1.305 (courtesy of G. Soucail and B. Fort)  
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the redshift distribution of this faint background galaxy population can be obtained 
from such studies of arclets around a sample of clusters of galaxies. 

6.4 Microlensing 

If a source is observed through a galaxy, its light bundle does not traverse a smooth 
distribution of matter, but clumpy material (e.g., stars). If the light bundle is suffi- 
ciently small, it will 'feel' the graininess of the mass distribution. Whereas the de- 
flection angle caused by an individual star (at its Einstein radius) is of the order 
of microarcseconds (this motivates the term 'microlensing') and thus unobservable, 
the distortion of the cross-sectional area of the light bundle by clumps leads to an 
observable magnification. Since the relative alignment of source and lensing galaxy 
changes in time, so does the magnification: microlensing leads to a lens-induced vari- 
ability of sources seen through a galaxy. This effect, in general, is extremely difficult 
to distinguish from intrinsic variability of sources, but for multiply imaged QSOs, 
such microlensing could be observed: an intrinsic variation of the source will be seen 
in all images, with their respective time delay, whereas variability due to microlensing 
is uncorrelated between the individual images. 

The best lens system for observing microlensing is again 2237+0305, owing to 
the small redshift of the lens (so that velocities in the lens plane correspond to large 
effective velocities in the source plane) and to the fact that the time delay of the 
images is of the order of one day, so that intrinsic flux variations of the source will be 
seen nearly simultaneously in all four images. In fact, uncorrelated flux variations in 
at least three images have been observed (Corrigan et al. 1991), ranging up to half a 
magnitude. This is a clear signature of microlensing. 

It is relatively difficult to obtain quantitative conclusions from such microlensing 
observations. One can compare observed lightcurves with numerical simulations, but 
due to the statistical nature of the effect definite conclusions will only be possible if a 
sample of microlensing events is observed, which means that a sufficiently long data 
track of the source must be available. Nevertheless, the observations of microlensing 
in 2237+0305 have led to the following conclusions: the observed flux variations are 
compatible with the picture in which microlensing is produced by a normal stellar 
mass spectrum (Wambsganss, Paczynski ~: Schneider 1991). The size of the emis- 
sion region of the optical continuum source of 2237+0305 is just compatible with a 
simple accretion disc model (Rauch &: Blandford 1991, Jaroszynski, Wambsganss ~: 
Paczynski 1992); the observed variations lead to an upper limit of the source size. 

In addition, microlensing can be used to obtain information about the brightness 
structure of sources. For example, the lightcurve of an extended source crossing a 
caustic is a convolution of its one-dimensional brightness profile and an universal func- 
tion, the point-source magnification function near folds. Hence, from a well-observed 
high-magnification event in an observed microlensing light curve, the one-dimensional 
brightness profile of a source could in principle be reconstructed (Grieger 1990). The 
broad-line region in QSOs, probably too extended to be magnified as a whole by 
microlensing, has intrinsic structure. Therefore, differential magnification across the 
broad line region can affect the line profiles of the broad emission lines (Schneider 
Wambsganss 1990). In fact, line profile differences in 2237+0305 have been observed 
by Fillipenko (1989). For further application of microlensing, see Sect. 12.4 of SEF. 
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7 Theoretical expectations for lens systems 

It is reassuring that (nearly) all observed gravitational lens systems can be understood 
in terms of a single simple model for the deflector , namely an elliptical gravitational 
lens. Here, 'elliptical' means a fairly rough characterization of the property of the 
deflecting mass: for the reconstruction of observed lens systems, it basically does 
not matter whether mass distributions with elliptical isodensity contours, elliptical 
isopotential curves, or quasi-elliptical lenses are used (such as axially-symmetric lenses 
with a superposed quadrupole term). A we shall explain below, all these matter models 
share some generic properties which axe essential for reconstructing observed lens 
systems. 

Generic properties of lenses are best discussed by considering the caustic structure 
of the lens. For intuition, it is simpler to understand the caustic structure of axially- 
symmetric lenses; therefore, in Sect. 7.1 we shall discuss the qualitative behaviour of 
an axi-symmetric lens model. It must be kept in mind that axially-symmetric lenses 
have non-generic properties, so that they can hardly be used for applications in real 
lens systems. The generic properties of 'elliptical lenses' will be described in Sect. 7.2. 

7 . 1  D i s k s  as  l e n s e s  

Consider a disk of radius ~, surface mass density 22(~) and mass M = 2~r f0 ° 22(~)~d~. 
We choose as the length scale in the lens plane the Einstein radius 

D d D d s  
~O = Rs Ds 

of the disk's total mass; then its dimensionless radius is x0 = ~/~0, and we define 
x := ~/~0. In the following, we investigate in turn the cases of a homogeneous and an 
inhomogeneous disk; the latter provides a generic description for centrally condensed 
axially-symmetric lenses. 

7.1.1 Homogeneous disk 

First, we treat the homogeneous case, Z = r0.  Then, M = 7r~2Z0, and the resulting 
lens mapping is 

- f o r  -< 
(48) 

Y = x - 1 / z  for Ixl _> x0 

It can easily be inverted. For x0 < I (equivalent to 22o > 22cr, a source at y has three 
images if 0 < y _< ( 1 - x D / x o  , o n e  inside the disk at x = x~0 Y/(X0 ~ - 1 )  and two outside, 

given by the corresponding solutions of the point-mass lens, x = } ( y i ~ ) ;  

two images if y = (1 - x ~ ) / x o ,  one at the rim of the disk, the other one outside, at 

XOI; 
image only. It is inside the disk at x = xg y / ( x ]  - 1) if 0 _< y ___ (z~ - 1)/x0, outside 

+ 
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Note that  in each case the magnification of the image inside the disk is (1 - ~0)-2,  
with ~0 = ~70/27cr = 1/x~. Its par i ty  is always positive, a n d  it corresponds to a 
maximum (minimum) of the Fermat  potential  if x0 < 1 (x0 > 1). 

In the special case x0 = 1, i.e., ~0 = 1, all points of the disk are mapped  into 
the point y = 0 on the optical axis. Thus,  this "lens" indeed acts as a perfect thin 
lens, the focus of which is at the observer. For a fixed physical mass density Z0, 
the value of n0 depends on the distances. The  value n0 = 1 corresponds to 0 = ~0, 
i.e., to 2RsDaDds = 02Ds. This equation is (naturally) symmetrical  in Do, Dos and 
reduces, in the case of Euclidean distances when Ds = Dd + Dds, to the elementary 
formula (1 /Da)  + (1/Das)  = ( l / f )  =:  (2Rs/o 2) for a thin lens of focal length f .  If the 
observer is between the lens and the focus, there can be a single image of the source 
only, but  if the focus is between the lens and the observer, three images are possible. 
The  magnification of the image within the disk is large if the observer is near the 
fOCUS. 

7.1.2 Inhomogeneous disk 

In t h e  "interesting" case x0 < 1, the circle of radius Y = (1 - x~)/xo separates the 
three-image region from the single-image region. The corresponding circle with radius 
x0 in the lens plane - the r im of the disk - is the curve where images fuse or are created. 
However, this circle is not a critical curve in the strict sense of catastrophe theory 
since the mapping given by (48) is not differentiable there. But suppose we smooth 
the edge of the disk so that  ~(x) = 22(x~0)/22cr becomes differentiable. Then  there is a 
point Xc close to x0 where (dy/dx) vanishes, and the corresponding circle in the source 
plane is indeed a fold-type caustic. Let the smoothing be done in such a way that ,  
(i) a central region Ixl _< Xl of the disk remains homogeneous, and (ii) for positive x, 
the scaled deflection angle a(x) has only one maximum, as in the homogeneous case. 
Inhomogeneous disks of this kind form an open set within the collection of axially 
symmetr ic  lenses. Their  qualitative properties will now be described. We put  

"=V 7 ' P=v  ' 

so that  0 < p < 1 and Xo 1 = ps < s. Note that  (2Rs/0)  is a measure of the 
compactness of the lens, 8 increases with the distance of the lens from the observer, 
and for fixed s, p increases with the distance of the source from the lens. The  following 
cases are possible: 
1) s _< 1. Then  x0 > 1 and, as in the homogeneous case, there are no critical points. 
The  observer is so close to the lens that ,  even for distant sources, the light deflection 
does not  suffice to produce more than  one image; the past light cone of the observer 
is smooth,  i.e., free of caustics; see Fig. l l a ,b .  
2) s > 1. This case is i l lustrated in Fig. 11c. The  large caustic C is indicated as a 
thick line. In three-space, it consists of a conical surface M and an axis A, a half-line 
meeting M at the vertex V. Sources so close to the lens that  ps < 1, have one image 
only; the corresponding source planes do not intersect C. Ifps = 1, x0 = 1; the source 
plane intersects C in the vertex V only. The corresponding critical set is the whole 
homogeneous "core" tzl _< z ,  of the disk; it consists of degenerate critical circles all 



82 

%X 

I 

I I 
I I 

% t I I 

I I 
t I I I 

% I I I I 
, I I I l I I 

\ 
\ 
\ 
% 
X 

% 

-.--.xo " -..-x~. X 

i ! 

/ 
/ 

i I 

/ 
I 

I 
I 

, I 
/ M 

I ii 
i , J / 
I , / 

~,.~,./ !o.~ 

M N \ ,  , / i /  

] x "  ', /l;/ 
/;l, 

I X \ ,  ', /,~f" 
I ~ \ ' ~ \  "'~X//I 

I X \ \  ! , , ,  ,//s, 

• ' ',1 "~ , 

\ ' ,  X 

/ /  / I /J~ ",, \ \ " x  X 

/ /  ///" x ~ i  x,~x \x / I / • ", V, X 
/ I I % "* \~'x 

I - X  / /  _ X  I I XX I "~ XX \ Xe  I 
x% x ~ ~ / /  / / /  

x \ %% I / / /  / / 
"x \,, \~ I ,,/ /~. ' / /  / "  

" , ,  x x ~ / / , ' / /  / "  
, , ' , ,  ,,\ / , '  , / / / "  

xx  \ X | I I / / /  , f "  , . : ,  ,:, /,,/.;. 
,,x / ~,/ 

x \  ~l I /  s/~. 

Fig.  11. Light bending by an inhomogeneous disk. (a) For observers close to the disk, there is 
no caustic. Followed backwards from O, all rays diverge. (b)Rays from a source "at infinity" 
are focused at the observer by the homogeneous inner part of the disk. (c) For observers at 
larger distances than in case (b), the large caustic has the shape of an inverted tent with a 
pole. Details are explained in the text 

mapped into V. If ps > 1, x0 < 1, and C intersects the source plane in a point (the 
image of tangential  critical circles in the lens plane) and a circle (the image o£ a radial 
critical circle). 2 If we consider a sequence of point sources on the optical axis starting 
closely behind the lens, the observer will see a point until the source has reached V, 
when  suddenly the source is seen as a disk. Sources at larger distances produce a 
central point- image and an Einstein ring, first inside, then outside the disk. 

It is also instructive to locate the points conjugate to O on all light rays reaching 
O. Let x' denote the point at which a ray crosses the lens plane. Then,  if 

Zx0 ] 1/2 
[ x (x) x 

Jx'l  >_ xo  : =  t ( D ~  - D d )  

2 The determinant of the Jacobian matrix (46) reduces for axially-symmetric lenses to 
(~ )  ( ~ ) .  Critical curves for which the first factor vanishes are called tangential crit- 
ical circles, those where the second vanishes radial critical circles. For the geometrical 
interpretation of these terms, see Sect. 8.1.1 of SEF. 



33 

the ray does not contain a point conjugate to O; if x0 < Ix' I < xe, it contains exactly 
one (simple) conjugate point, which is located on the axis A; if Xl < Ix'l < x0, the ray 
contains two (simple) conjugate points, one on A and one where the ray touches M; 
and if [x' I = xl, the ray contains only one (degenerate) conjugate point, the vertex V 
of the large caustic. Clearly, the latter is the set of points conjugate to O on some ray 
through O. (Note that the preceding description holds for the rays and the caustic 
in spacetime although the figure and the discussion refer to its projection into the 
three-space.) 

The discussion just given remains valid if the homogeneous inner disk shrinks 
and is removed,.xl -~ 0. Then M has a cusp, not only a vertex, at V, and only the 
central ray passes V. An example is provided by the disk representing a homogeneous, 
spherical mass. 

7.2 'El l ip t ica l '  lenses  

As we mentioned in the introduction to this section, for modeling observed gravi- 
tational lens system, a generic set of lens models sufficies for (nearly) all observed 
systems (with the exception of 2016+112, where multiple light deflection must proba- 
bly be taken into account). The types of 'elliptical' lenses described above work equally 
well in reconstructing images, because the number of observational constraints is fairly 
small: for multiply imaged QSOs, one has to match the image positions, their flux ra- 
tios and, if the source has a compact resolved radio structure (such as for 0957+561), 
the relative magnification matrices. Adjusting the free parameters of a lens model 
from each of the classes mentioned allows a match of observed and theoretical prop- 
erties of the lens system. On the other hand, the observed ring images provide more 
constraints on a lens model; however, ring images typically probe the lens mapping 
only close to the critical curve of the lens and is thus sensitive only to a small number 
of properties of the mass distribution, which can be matched by any of the models 
listed above. These remarks imply good and bad news: the good news is that our ideas 
about the rough mass distribution in galaxies are in accord with gravitational lens 
observations; the bad news is that, without additional information, multiply imaged 
QSOs and radio rings do not allow to investigate the mass distribution inside lensing 
galaxies in any detail. 

7.2.1 Evolution of the caustic structure 

Consider a matter distribution with fixed surface mass density ~(~), and consider the 
separation between lens and source' as a variable quantity; e.g., let p = Das/Ds. We 
assume that the mass distribution is of one o f  the types mentioned above, and that 
Z is finite everywhere and decreases outwards. 

For sui~iciently small p, the lens is too weak to produce critical curves, and thus 
multiple images. For p = pl, the Jacobian matrix at the center of the lens will have 
a zero eigenvalue, whereas the second eigenvalue is positive. This characterizes a lips 
catastrophe, one of the metamorphoses mentioned in Sect. 5. For increasing p, the size 
of the lips caustic grows, and the Jacobian matrix at the center has one eigenvalue of 
either sign. At p = p2, the larger of the two eigenvalues becomes zero, leading again 
to a lips catastrophe. For p ~> p2, there are now two lips-shaped caustics, one inside 
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the other, and oriented mutually perpendicularly. Increasing p further, the size of the 
inner caustic grows, i.e., its two cusps approach the outer caustic. At p = p3, the 
cusps ' touch'  the outer caustic, and at these two points, hyperbolic umbilics occur 
(another type of metamorphoses). For p > p3, there are two closed caustic curves, one 
with four and one with no cusps; we will call the first one the "tangential" caustic 
(since this caustic occurs if the tangential critical circle of a symmetric lens is slightly 
perturbed) and the latter one "radial" caustic. For p > p3, no more metamorphoses 
occur in general ; nevertheless, the qualitative morphology of the caustics changes 
for increasing p: for p ~ p3, the two cusps which were formed during the hyperbolic 
umbilic transition lie inside the radial caustic, whereas the other two cusps of the 
tangential caustic lie outside the radial one. At p = P4, these two latter cusps cross 
the radial caustic, so that  for p > p4 the tangential caustic lies completely inside the 
radial one. This is the case which is most relevant for modeling the observed multiple 
image QSOs and ring systems. 

If a cusp lies outside the radial caustic, a source close to it will have one or 
three highly-magnified images, without any additional images; we term such a cusp 
"naked". Naked cusps probably are relevant for explaining some of the luminous arcs: 
the generic model for the occurrence of arcs is that  of an extended source just inside a 
cusp. In order to avoid additional images of the corresponding source, the cusp must 
be naked. Straight arcs can occur if an extended source lies within a lips caustic. 

7.2.2 Imaging properties 

It is usually assumed that  the central part  of galaxies is sufficiently compact, so 
that  for typical lens and source redshifts, n ~ 1 at the center of the lens. In fact, the 
observational evidence for the occurrence of even number of images (in contrast to the 
expected odd number) supports this view, as it is usually assumed that  the 'missing' 
image is situated close to the center of the lens, where the surface mass density is 
so large as to cause a strong demagnification of the corresponding image. Assuming 
this to be the case, the typical caustic of an "elliptical lens" is that  corresponding 
to the case p > p4, i.e., where the tangential caustic with its four cusps lies entirely 
inside the radial caustic. We consider this case now in somewhat more detail; see also 
Fig. 12. 

If a source is situated close to the center of the source plane (like the cross in 
Fig. 12a), it will have five images, one of which will be close to the center of the lens and 
thus strongly demagnified, whereas the other four will lie more or less symmetrically 
around the lens center. The more symmetric the image arrangement is, the less are the 
differences in their magnifications. The two GL systems 2237+0305 and 1413+117 are 
probably typical examples for such a lensing configuration. Moving the source closer 
to the tangential caustic, but not close to one of its cusps (like the triangle in Fig. 12c), 
two of the four images will come closer together and become brighter. The GL system 
1115+080, and probably also 0414+053 can be accounted for with such a lensing 
geometry. 

If the source lies close to, but on the inside of a cusp (the triangle in Fig. 12a), 
three bright images will be very close together; depending on the resolution of the 
observations, such a triple image is hard to resolve, so that  it appears to an observer 
as a single, very bright image. It is unclear at the moment whether such a system has 
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Fig. 12. The caustic curves (a) and (c) in the source plane and critical curves (b) and (d) in 
the lens plane of a generic 'elliptical' lens, with p > p4 (see text). The symbols in the source 
plane indicate three different source positions in each of the frames (a) and (c), with the 
corresponding image positions plotted by the respective symbols in (b) and (d). The relative 
size of the symbols in the lens plane should indicate the magnification of the images (from 
Blandford and Narayan 1992) 

been found already. Due to the large overall magnification, such GL systems should be 
included in flux-limited samples preferentially (see the discussion on amplification bias 
in the following section), and one might therefore suspect that some of the GL candi- 
date systems with large flux ratios of the images (most noticibly, UM425=1120+019) 
can be accounted for by such a lens arrangement. In all the three cases just described, 
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the fifth image is usually much fainter than the other images, if the lens is sufficiently 
compact, and can therefore easily escape detection. 

Consider next the case that a source lies outside the tangential caustic, but inside 
the radial caustic. If it is not too close to the latter (like the circle in Fig. 12c), two 
of its three images will have comparable magnification, whereas the third close to 
the center of the lens will still be strongly demagnified. This is the lensing geometry 
which is expected to occur most frequently, due to its relatively large probability. The 
existing sample of GL systems, however, does not contain a large fraction of such 
systems (one example is 0957+561); we interpret this discrepancy as being due to 
strong selection biases, to be explained in more detail in Sect. 8. Briefly, optical QSO 
surveys bias against GL systems with two images of comparable brightness, since 
one of the selection criteria is the stellar appearance of the source (Kochanek 1991). 
Convolving a pair of images of comparable brightness with the seeing disc, it appears 
elliptically, therefore extended, and will be excluded from further examination (by 
spectroscopic means). Furthermore, the total magnification of such systems is much 
smaller than for the cases described above, and thus, the amplification bias is less 
effective for such GL systems than for the 4-image cases. 

Moving the source closer to the radial caustic (like the cross in Fig. 12c), the image 
with negative parity moves towards the radial critical curve and becomes weaker. 
Depending on the separation from the radial caustic, the third image can become of 
comparable brightness to the negative parity image, but for this to occur, these two 
images must be fairly close together, so that they are difficult to resolve observationally 
[note that a pair of images near a radial critical curve need not necessarily be highly 
magnified; whereas the scaling # cx (AS) -1 is of course also valid for radial critical 
curves, the constant of proportionality can be fairly small for realistic lens models]. If 
the double nature of the B image in 2345+007 can be confirmed, it can be accounted 
for by such an arrangement. Also, the two GL candidates 1635+267 and 0023+171 
can be of that type. 

The foregoing discussion has shown that a single "elliptical lens" can account for 
nearly all types of observed gravitationally lensed QSOs (and it can also account for 
the observed radio rings). From that we conclude that the existing GL systems pose 
no problem in understanding their qualitative features (again, except for 2016+112) 
with a simple lens model, although the lens parameters required from observations, 
in particular the lens mass, appear in some cases to be fairly unusual. On the other 
hand, since most multiple QSO gravitational lens systems are so easily reproduced 
by simple models, this modeling procedure can not infer much information about the 
matter distribution of the lenses; the only solid model parameters are the mass inside 
a circle traced by the observed images and the 'ellipticity' of the lens. 

8 Further applications 

In this final section, we want to present some additional applications of gravitational 
lensing, of vastly different scale: from the detection of dark matter in our Galaxy to 
the large-scale structure of the universe. 
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8.1 T h e  s ize  of  L y ~  c louds  

Each QSO at sufficiently high redshift, such that the Ly~ emission line can be ob- 
served from Earth, shows a large number of narrow absorption lines sh0rtward of the 
Lya emission line. This so-called ~forest' is interpreted as being due to intervening 
material in the line-of-sight to the QSO, and the absorption lines being due to the 
Lya transition. It is less clear what the nature of the absorber is; one can measure the 
redshift, equivalent width (yielding the column density of neutral hydrogen) and line 
width. Gravitational lens systems provide us with an invaluable tool to determine the 
size of this absorbing material. 

Consider a lens system in which a high-redshift QSO has two observable images. 
The transverse separation between the corresponding light bundles varies as a function 
of redshift: it is zero at the source, and largest at the redshift of the lens. Suppose an 
absorption line is seen in the spectra of both images, at the same redshift; then the 
size of the absorbing material must be at least as large as the separation between the 
two light bundles at the respective redshift. Hence, redshift coincidences of absorption 
lines leads to a lower bound on the size of the absorbing material. If, in addition, the 
equivalent widths of the corresponding lines in both spectra axe strongly correlated, 
it could be concluded that the two light bundles actually have crossed the same cloud 
(as opposed to crossing two different clouds at the same redshift). 

Two lens systems have turned out to be useful for such studies. The lensing nature 
of one of them, 2345+007, however, has not yet been totally clarified, but  it is an 
excellent candidate system. The large angular separation of 7.3 arcseconds makes this 
a very useful target for these spectroscopic investigations, although the faintness of 
the QSO images renders such an investigation difficult. A second system, UM673 with 
an image separation of 2.2 arcseconds, is brighter and thus higher-quality spectroscopy 
can be obtained. Results of such a study are reported in Smette et al. (1992). 

8.2  D a r k  m a t t e r  in o u r  G a l a x y  

Observations of the rotation curve of our Galaxy and that of other ~spiral galaxies 
indicate the presence of a halo composed of dark matter. It is unclear what the 
nature of this dark matter is; candidates are: weakly interacting elementary particles, 
brown dwarfs and 'Jupiters', or black holes. If the dark matter such of such compact 
objects, these can lead to lensing effects of background sources: for stellar mass lenses, 
the corresponding angular separation of split images would be much too small to be 
detectable, but the magnification could be observed. The problem with this idea is 
that the probability of finding a single lens sufficiently close (~vithin its Einstein radius) 
to the line of sight of an extragalactic object is about 10 -6 . Hence, for observing this 
effect a huge number of source must be photometrically monitored. 

Paczynski (1986) suggested monitoring of the stars of a nearby galaxy, the Large 
Magellanic Cloud or M31. In fact, two groups are currently carrying out such an 
observational program (see the corresponding contributions in Kayser &= Schramm 
1992). The difficulties for such a program are enormous; we want to mention only a 
few of them. First,-many stars are intrinsically variable, and it will be a major task 
to separate intrinsic variability from lens-induced one. A magnification event will be 
a 'once in a lifetime' event, that is, events will not recur. The program will work by 
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comparing the brightnesses of sources from consecutive observations. The required 
large number of stars implies that the amount of data produced in the course of the 
program will be huge. 

On the other hand, such an experiment is probably the only way to clarify the 
nature of the dark matter in the halo of our Galaxy. It will be sensitive to compact 
objects of masses between 10-~Me and about 1M®. A calibration experiment, also 
suggested by Paczynski (1991), can be used to test the sensitivity of the observational 
program, including the software for data analysis. Whatever the outcome of the pro- 
gram will be, it certainly will produce the most useful database for stellar variability 
and is thus worth the effort. 

8.3 Ampl i f i ca t ion  bias  

8.3.1 General ideas 

In a completely smooth universe, there is a unique relation between the luminosity 
L of a source and the flux S we observe from this source, S = L/(4~rD2L), where 
DL(Z) is the luminosity distance to a redshift z, which can be directly computed from 
the parameters $2 and H0 of the cosmological model. However, our universe is not 
homogeneous, at least not on small scales. In a locally inhomogeneous universe (or 
clumpy universe), the flux observed from a source depends, besides its luminosity and 
redshift, also on the propagation of its light bundle through the universe, which is 
affected by the local inhomogeneities. Since gravitational light deflection can affect 
the flux from a source, the relation between flux and luminosity has to be modified, 
S = # L/(4zcD~), where # is the magnification caused by light deflection. Since, in 
general, the magnification of any given source is unknown, the best one can hope for 
is to obtain a probability distribution p(#, z) for the magnification. Suppose we knew 
such a probability distribution. Now, let ~(L, z) be the number density of sources 
at redshift z with luminosity greater than L. In a completely smooth universe, the 
number counts of these sources, i.e., the number of sources n0(S, z) per unit redshift 
interval at z and with flux greater than S would be 

n0(S,z) = C(z) ~(47rD~ S,z) , (50a) 

where C(z) is a constant volume factor. In a clumpy universe, with given p(#, z), the 
source counts n(S, z) would be 

n(S,z) = C ~ )  / d# p(#,z) ~(4~rD~ S/it, z) , (50b) 

and C is the same as in (50a); (#) (z) is the mean magnification, which is determined 
from overall flux conservation (concerning this point, see Ehlers ~z Schneider 1986). 
Eq.(50b) implies that even from well-measured source counts, the intrinsic luminosity 
function cannot be directly inferred. In particular, it implies that in a flux-limited 
sample of sources, there may be some sources which are magnified above the flux 
threshold of the sample, and which, without this magnification, would be too faint 
to enter the sample. This effect is called "amplification bias", and it can severely 
affect the source counts of compact extragalactic sources (presumably mostly relevant 
to QSOs and BL Lac objects). Whether or not the amplification bias is important 
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depends on p(#, z), which in turn depends on the population of lenses in the universe, 
the redshift and the size of the sources, and on their intrinsic luminosity function: the 
steeper q~(L, z), the more biasing can occur. 

Equation (50b) can be applied to the whole sky, and thus the overall source counts 
can be affected. It can also be applied to certain regions in the sky; an example of 
this will be given below. Whether or not the amplification bias is relevant for our 
observations of QSOs cannot be decided by theory only; however, there are at least 
three observational results which strongly suggest that it is indeed the case. 

8.3.2 Evidence for the amplification bias 

The probability for any given high-redshift source to be multiply imaged is less than 
1% (as already estimated by F. Zwicky in 1937!). This does not mean, however, that 
the fraction of multiply imaged sources in flux-limited samples is as small as this - -  
due to the amplification bias, this fraction can be considerably larger, as magnification 
and image splitting are not mutually independent (e.g., if the amplification bias is due 
to microlenses in galaxies, the galaxy hosting the magnifying stars can cause multiple 
images). 

As argued above, the effect of the amplification bias increases with increasing 
steepness of the luminosity function. Since the luminosity function for faint QSOs is 
flat, whereas it is steep for luminous QSOs, one expects the amplification bias to be 
most effective for apparently luminous QSOs. Taking these two arguments together, 
one would therefore expect, if the amplification bias applies to our source counts, to 
find more multiply imaged QSOs among the apparently more luminous sources than 
for fainter ones. In fact, this has been recently verified observationally (for a review 
and references, see Surdej 1990): in two samples of apparently luminous QSOs, the 
fraction of "interesting" objects (those which show either multiple optical components, 
or elongated structure, or fuzz around the QSO image) is greater than 20%, and the 
fraction of "good lensing candidates" is about 5%. This has to be compared with 
the theoretical fraction given above, and the low fraction of multiply imaged sources 
found in fainter optical QSO samples and in samples of radio sources (Burke 1990). 
In addition, since the QSOs in the samples are at high redshift, the fuzz observed 
around many of them cannot be due to the host galaxy, unless it would be unusually 
luminous; rather, it is supposed (although not verified) that the fuzz is due to a 
foreground galaxy, lying just on top of the QSO and thus being a potential lens and 
magnifier. It appears that these observational results, if they stand the test of time, 
can only be interpreted if one assumes that the source counts of QSOs at the bright 
end are substantially affected by the amplification bias! 

If a substantial fraction of the apparently bright QSOs are ,magnified, one should 
expect to see the lens (or matter associated with it) along the line-of-sight to some 
of these QSOs. One possible way to detect this is to count the number of galaxies 
around bright, high-redshift QSOs, and see whether they are overdense. In fact, several 
groups have reported on an overdensity .of galaxies around high-redshift QSOs (for a 
summarizing discussion, see Narayan 1992). The observational situation is not very 
clear yet, owing to the extreme difficulties encountered by these observations. 

As a third evidence for the influence of the amplification bias on source counts, we 
want to mention the results of M. Stickel and his collaborators (Stickel, Fried &: Kfihr 
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1988a,b, 1989): out of only a few tens of BL Lac objects with redshift measured from 
their (weak) broad emission lines, three have a foreground galaxy just on top of them 
(i.e., with misalignment less than I arcsecond). Although the statistical significance 
of this result cannot be easily estimated, these close alignments seem to clearly point 
towards magnification of the underlying source by the foreground galaxy. Whether or 
not this provides sufficient evidence for the suggestion by Ostriker & Vietri (1985), 
that at least part of the BL Lac population is due to microlensing of the optical 
continuum of an optically violently variable QSO (OVV) (so that the continuum is 
magnified to outshine the broad emission line flux, and thus turn the OVV into a BL 
Lac object), is unclear. Certainly, lensing does not avoid the necessity to have rela- 
tivistic beaming in these sources, e.g., because of the observed superluminal motion. 
Some of the close alignments of BL Lac objects and foreground galaxies can be used 
to constrain the core size of the galaxies (Narayan &: Schneider 1990). 

Finally, direct evidence for amplification bias comes from detailed optical imaging 
of high-redshift (z > 1) 3CR radio galaxies (Hammer ~= Le Fevre 1990, and references 
therein). Out of the 31 such objects, 27 have high-quality optical images made; of 
those, ~ 75% have multiple optical components. Four of the sources have a foreground 
galaxy within 5 arcsec, where the hypothesis of a chance projection would predict 
0.5 such associations. Another 5 of these sources have a foreground Abell and/or  
Zwicky cluster in their line-of-sight. Two of these sources are likely multiple-image 
lens candidates. From a case by case analysis, those four sources with a foreground 
galaxy can be shown to be significantly (~> 0.5 mag) magnified, and the same is true 
for at least one source with a foreground cluster. In addition, for at least three of 
these 3CR radio galaxies, the magnification of their radio flux can be estimated to be 
such that without the magnification, these sources would not have been included in 
the 3CR catalog. Hence, for this class of objects, the amplification bias works at least 
at the 10% level; however, this value can be considered to be a fairly conservative 
lower, limit. If one considers the fact that these radio sources are fairly extended 
(and therefore, magnification can occur only by fairly massive lenses), and that the 
luminosity function of these sources is probably flatter than that of QSOs, the above 
value for the amplification bias is quite surprising and suggests that the source counts 
of QSOs are severely affected by the amplification bias. 

8.4 Light p r o p a g a t i o n  in i n h o m o g e n e o u s  universes  

As mentioned before, the in_homogeneity of the universe on scales much smaller than 
the horizon affects the light propagating from distant sources to us. The most obvious 
consequence of this effect is the occurrence of multiply imaged QSOs, arcs and rings. 
For these impressive systems to occur, a massive, compact mass distribution must be 
close to the line of sight to the source (here, 'compact' means that the central surface 
mass density is at least of the order of Zcr). Since the density of such compact objects 
is probably very small (i.e., the probability, or 'optical depth', for image splitting on 
scales of an arcsecond is very small), most light bundles from distant sources will be 
subject to much subtler effects. Nevertheless, every light bundle will be affected by 
large-scale matter inhomogeneities in the universe. 

The description of light propagation in an inhomogeneous universe can proceed in 
different ways, depending on which effects one wants to investigate. We will distinguish 
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between two major descriptions which we term 'clumpy universe' and 'LSS universe', 
in which the Large Scale Structure of the matter distribution is taken into account. 

The clumpy universe description is the one mostly used in gravitational lens the- 
ory. It is constructed in the following way: a fraction (1-&)  of the total matter density 
of the universe is concentrated in compact clumps, whereas the remaining fraction & 
is homogeneously distributed (thus the term 'smoothness parameter' &). The basic as- 
sumption underlying this construction is that the large-scale (or smoothed-out) metric 
of such a universe is that of. a smooth Friedmann-Lemaltre universe, and the metric 
deviations are only local. Support for the validity of this assumption has been given by 
Futamase & Sasaki (1989). In the LSS universe, the mass distribution is constructed 
from density fluctuations which evolve owing to gravitational instability. This is done 
either from sophisticated simulations of the large-scale structure (e.g., N-body codes, 
Zeldovich approximation) or by using some kind of analytic approximation, such as 
linear perturbation theory. Superposed on these smooth inhomogeneities, one can ac- 
count for the presence of compact lenses, such as galaxies. Also in this model, one has 
to assume that the average metric of the universe is a smooth Friedmann-Lema~tre 
metric, and that metric perturbations are local. 

The latter condition which applies in both models can best be described as the 
'area-fitting' condition: the two-dimensional surface of sources with constant redshift 
must have the same area as the corresponding sphere in a smooth Friedmann-Lemaltre 
universe. The immediate consequence of this condition is flux conservation: consider a 
population of sources all with the same luminosity. Since photons are neither destroyed 
nor created by the process of gravitational light deflection (Sect. 3), the mean flux of 
all such sources with constant redshift must equal the flux that one would measure 
in a smooth Friedmann-Lema~tre universe (see SEF, Sect. 4.4.5 for a more detailed 
discussion of this point). 

The Dyer & Roeder (1973) description of light propagation in a clumpy universe 
proceeds as follows: light bundles which propagate far from all clumps are assumed to 
be unaffected by the tidal forces produced by the inhomogeneities. This assumption, 
which is at best approximately valid, defines regions in the universe termed 'empty 
cones'; a light bundle propagating through such an empty cone is affected only by 
the local matter density in the beam, given by & times the mean cosmic density. If 
a source is observed through an empty cone, its flux is smaller than it would be if 
it was observed in a smooth Friedmann-Lema~tre universe, since the matter in the 
light bundle is reduced, i.e., the light bundle experiences less Pdcci focusing. The 
gravitational deflection by clumps for those light bundles which pass by closely is 
taken into account explicitly using the lens equation. For example, if a single clump 
is close to the line of sight to a distant QSO, it is assumed that the light bundles 
propagate through empty cones (i.e., are unaffected by shear from other clumps) 
from the source to the lens and from the lens to the observer. Hence, the angular 
diameter distances entering the lens equation are those obtained from the empty cone 

- the Dyer-Roeder distances (see SEF, Sect. 4.5) - and therefore, the magnification 
obtained from the lens equation via (34) is the magnification relative to the case in 
which the source is observed through an empty cone, and not relative to the case 
were it is observed through a corresponding smooth Friedmann-Lemaitre universe. 
The magnification theorem stated in Sect. 3 is to be interpreted such that no source 
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can be demagnified relative to the case where the source is seen through an empty 
cone.  

The assumption underlying the empty cone approximation can be studied numer- 
ically: a clumpy universe is modeled on the computer, and the propagation of light 
bundles through such a matter distribution is studied, either using the optical scalar 
equations or multiple deflection gravitational lens theory (the latter approach is much 
more effective and provides a superb approximation for all relevant light bundles]); see 
Sect. 11.4 of SEF for references. One of the main results of such studies is that if the 
density of clumps in the universe approaches the critical (or closure) density, e m p t y  
cones are rare, but for the probably more realistic assumption that the clumps do 
not constitue a major fraction of the critical density, the empty cone approximation 
seems to be well justified in most cases. 

In the case of an LSS model, one cannot define empty cones: along each light bun- 
dle, the local matter density will vary as a function of redshift. Therefore, such a model 
does not allow to define a 'reference' such as the empty cone in a clumpy universe. 
One thus proceeds to normalize everything with respect to the smooth Friedmaml- 
Lemaitre universe, allowing matter inhomogeneities to have either sign. This implies 
that the Ricci focusing term can have either sign, and thus the magnification can be 
larger and smaller than unity relative to the smooth Friedmann-Lema~tre universe, 
which is the only reference available. Hence, in this context the magnification theorenl 
mentioned in Sect. 4 is no longer valid, since its proof is based on the fact that de- 
flecting matter has nonnegative surface mass density relative to the reference universe 
(which determines which angular diameter distances have to be used). 

Light propagation through clumpy and LSS universe models has been studied by 
various authors (see BN, Sect. 5.4, and references therein). We mention only a few 
aspects here. 

The number of multiply imaged high-redshift sources yields an estimate of the 
number density of lenses which can lead to the necessary image splitting. Owing to 
the amplification bias, which is fairly uncertain to correct for, in most cases only up- 
per bounds on the density of lenses can be given. Analysis of VLBI observations of 
compact radio sources have set an upper limit to the density of compact objects in the 
mass range of 107M'® ~< M ~ 10951® of Q ~< 0.1, and the VLBA under construction 
will be able to improve this upper bound considerably (Kassiola, Kovner & Blandford 
1991). Lower masses can be probed by higher resolution VLBI observations; it was 
suggested recently that the comparison of the VLBI maps of the two compact com- 
ponents in 0957+561 could reveal the presence of massive black holes of masses of 
around 106M® and slightly lower (Wambsganss & Paczynski 1992). Smaller masses, 
of 1M® say, reveal themselves by microlensing, i.e., a time-variable magnification of 
some compact sources could be detected in principle; unfortunately, however, it will be 
basically impossible to distinguish this lens induced variability from intrinsic effects. 

Weak leasing effects influence the light bundle of every high-redshift source. To 
first order, a round source will have an elliptical image, caused by the tidal gravita- 
tional forces (Weyl focusing, or shear). The faint blue galaxy population mentioned 
in Sect. 6.3 above provides a poten{~al tool for investigating this effect. If the scale of 
the matter inhomogeneities causing these tidal distortions of images is much larger 
than the mean separation between those galaxies, the distortion should be coherent, 
that is, the direction of the distortion should be the same for neighbouring sources. 
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However, sources are intrinsically elliptic, and thus for the detection of these coherent 
effects it is essential to separate intrinsic ellipticity from propagation effects; this can 
only be done by assuming that the orientation of the intrinsic ellipticity is random. 
For a detailed study of these effects, see Blandford et al. (1991). 

Luminous high-redshift, compact radio sources are spatially correlated with bright 
(Lick) galaxies, as claimed by Fugmann (1990). If this result is statistically significant, 
it can most likely only be understood in terms of the amplification bias. However, the 
correlation takes place on angular scales of tens of arcminutes, much too large for 
individual galaxies to be responsible for the magnification. In a recent investigation 
(Bartelmann 8z Schneider 1992) we have found that only lensing by large scale matter  
inhomogeneities can be responsible for causing such a correlation: overdensities of 
matter  in a certain region of the sky, which can yield magnification of background 
sources, is associated with an excess of galaxies, which are assumed to have formed 
in the density peaks of the cosmic matter  distribution. A more detailed investigation 
of such large scale correlations between galaxies and high-redshift source is planned; 
it may allow to gain significant information on the shape of the large scale structure 
density spectrum and on the correlation between luminous and dark matter  (the 
so-called biasing factor). 

Finally, we would like to note that if cosmic strings exist, they will be most likely 
detected by their gravitational lens action (see BN, Sect. 5.4, and SEF, Sect. 13.3.4). 
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1 In troduct ion  

The development of a "post-Newtonian (PN) formalism" to deal with the 
general relativistic N-body problem began as early as 1915-1916 in papers 
by Einstein, Droste and De Sitter. This early work was motivated by the goal 
to derive observational predictions from General Relativity. Consequences 
of this historical PN approach are: 

- the approach itself is conceived within the conceptual framework of the 
Newtonian N-body problem; 

- General Relativity is compared and contrasted to Newton's theory. This 
led to the concept of "relativistic effects" = (Einstein) minus (Newton); 

- some Newtonian theorems are taken over, without proof, to the general 
relativistic context; 

- the then available observational accuracy motivated the choice of, and 
the way of solving, the theoretical problems (such as e.g. secular effects 
in the motion of N "mass points"). 

Usually this classical PN-approach to the N-body problem is based upon 
the following ingredients: 
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- one single coordinate grid for the whole system 

(z")  = Czt,~,y,z);  

- one single PN-expansion; 

- the use of basic variables or quantities introduced by analogy with the 
Newtonian ones, e.g. a "mat ter  density" p(t, z, y, z), a "center of mass",  
"multipole moments"  or the "Newtonian potential" U(t ,x) ,  

vC~,x) = f 
p ( f ,x  I) 

d 3 z  ' 

- a PN-expansion of the metric in the form 

1 Eo 2  1+o(1 ) 

goi = - - ~ U i  + O 

gij = 1 "~- -~ ~ij "~- 0 , 

where # represents a complicated "relativistic potential".  The  concep- 
rum danger related with this traditional PN-approach lies in the fact 
that  t h e  "post-Newtonian framework" is misused as a kind of "neo- 
Newtonian framework".  This misuse happened frequently in the litera- 
ture,  e.g. by an implicit identification of ~ = z ° /c  with "absolute Newto- 
nian t ime",  of (z i) = (z,y,z) with absolute Newtonian space, of p ( t ,x )  
with "physical mass density" etc.; i.e. by a reduction of Einstein's the- 
ory to the Procustean Bed of Newton's theory (Fig. 1). Consequences 
of this misuse are: errors (e.g. in equations of motion),  illusions and 
confusions. 

Motivations for formulat ing a new PN framework come from two fact- 
s: (i) the recent development of new methods  for treating the mot ion of 
strongly self-gravitating bodies, and (ii) the great improvement  in measur- 
ing accuracy brought  by modern  technology. Whereas the dimensionless 
gravitational potential  (GM/c2R) everywhere in the solar system is smaller 
than  about  10 -6,  it can reach values of order unity in systems of compact  
bodies (neutron stars or black holes). E.g. GM/c2R ~- 0.9. at the surface of a 
neutron star. Therefore, the theoretical t rea tment  of such compact  objects 
and their mot ion in a binary system required the introduction of new meth- 
ods (D'Eath  1975, Damour  1983, Thorne  and Hartle 1985). On the other 
hand  new techniques have been developed for the precise determinat ion of i) 
the global mechanics of the solar system, ii) the local gravitational environ- 
ment  of the Ear th  and ifi) the fitting of the global and local structures.  As 
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Fig. 1. The misuse of the PN-framework as reduction to the Procustean Bed of 
Newton's theory 

far as the global mechanics of the solar system is concerned, radar  ranging 
to planets now achieve accuracies of a few meters, laser ranging to the Moon 
a few centimeters and timing of millisecond pulsars less than a microsecond. 
The determination of the local gravitational environment of the Earth  takes 
advantage of atomic docks with stabilities of the order of 10 -14 - 10 -15, 
the Global Positioning System (GPS) or Satellite Laser Ranging with cm 
precision. Finally, the relation between the local and the global structures 
is studied by Very Long Baseline Interferometry (VLBI). 

Motivated by these developments we have worked out a new approach 
(more "Einsteinian") to general relativistic celestial mechanics (Damour- 
Soffel-Xu 1991, 1992a,b). This new formalism is based upon three basic 
ingredients: 

!. a systematic use of local reference systems with a new way of freezing 
down the coordinate freedom; 

2. the use of new field variables and new mat ter  variables with an associ- 
ated "transformation theory" and 

3. the use of new definitions of "multipole moments",  "tidal moments",  
"center of mast;" etc. 

The convenience of using local reference systems had already been empha- 
sized in Fokker (1920), Synge (1960), in the theory of motion of strong- 
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ly self-gravitating bodies (D'Eath 1975, Damour 1983, Thorne and Hartle 
1985) and in other articles on the weak field problem (Ashby and Bertotti 
1984, 1986; Brumberg and Kopejkin 1988, 1989. The new field and matter 
variables had been introduced for the problem of the generation of gravi- 
tational waves by an isolated system by Blanchet and Damour (1989) and 
Blanchet et al. (1990). The new definitions of "multipole moments" result- 
ed from a generalization of the Blanchet-Damour (BD) moments (Blanchet 
and Damour 1989) to the gravitational N-body system. In the following we 
shall outline the main features of our new framework. For details and proofs 
one should consult Damour et al. 1991, 1992a,b. 

2 First basic ingredient: local reference sys tems  

2.1 N o t a t i o n  

We consider an isolated N-body system where rotating bodies of arbitrary 
shape and internal structure move under the influence of their mutual grav- 
itational interaction. To describe such a system we employ N + 1 different 
coordinate systems (or charts or reference systems): one global system of 
coordinates z ~ covering the entire system and which might extend to in- 
finity and N local coordinate systems X~, X ~ , . . .  ,X~,  one for each of the 
N bodies which is (in a sense which will be defined later in the formalism) 
attached to the body and co-moving with it (see Fig. 2). 

If possible we try to stick to a systematic notation: in the global system 
quantities will be denoted by small letters, space-time indices are chosen 
from the second half of the greek alphabet (e.g. # ,v = 0,1,2,3), spatial 
indices from the second half of the roman alphabet (such as i , j  = 1, 2, 3); 
in each of the local systems quantities will be denoted by capital letters 
and the indices are chosen from the first half of the alphabets (e.g. a,/3 = 
0, 1,2, 3; a, b = 1,2, 3). Letters A, B, C , . . .  are used as body labels. 

2.2 Relat ivis t ic  k inemat ics  at the  1PN approximation 

An important point in our scheme is the way in which the gauge problem 
(the choice of coordinates) is treated. Usually in the literature coordinates 
are fixed by certain differential gauge conditions, such as the harmonic gauge 
or the standard PN gauge in the first PN approximation. In our framework, 
however, in each of the N + 1 charts, the spatial coordinates are fixed by 
algebraic conditions, whereas we allow for some freedom in the choice of 
the time coordinate. Note, that differential gauge conditions are not able to 
fix coordinates in the local accelerated systems where boundary conditions 
are not available. On the other hand leaving the time gauge open leads to 
a gauge freedom of the framework which is similar to the one in classical 
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Fig. 2. One global and N local coordinate systems are used for the description of 
the gravitational N-body system 

electrodynamics. As a consequence gauge invariant quantities can be intro- 
duced and the gauge freedom can serve as a useful tool for checks of involved 
calculations. 

The logic of our fixing of spatial coordinates goes as follows: if we con- 
sider the spatial Einstein equations 

4Ri / (4g ) -  14Rg iJ = 8~rG 

plus the usual post-Newtonian assumptions: 

(1) 

and 

goo = - 1  + o c t - = ) ,  goi = 0 ( ~ - ~ ) ,  g,j = 6~j + 0 ( ~  -=) (2a) 

T OO = 0(c+2) ,  T ° i =  0(c+1), T ij = O(c °) (2b) 

00 = o ( c - 1 ) 0 i ,  (2c) 

~R~j(%,) = o ( ~ - ~ ) ,  
then one finds that  

where the following 3-dimensional metric has been introduced, 

(3) 

~ij--  --googij+goigoj, (4) 
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and where the superscript 3 refers to the corresponding 3-dimensional Pdcci 
tensor. But in a 3-dimensional manifold the vanishing of the Pdcci tensor 
implies the vanishing of the Pdemann curvature tensor. Hence, the metric 
7ij describes some 3-space which is flat modulo terms of order c -4. This 
implies that there exist 7-Cartes ian spatial coordinates such that 

-googlj = sij + 0(4)  (5a) 

A A 0(4)  (Sb) -G00G~b = g.~ + 

for each of the local systems A. Here, we wrote 

OCn) - O(c-").  (6) 

We now face the following mathematical problem: what is the most general 
structure of coordinate transformations 

x .  = f ~ ( x ~ )  (7) 

f rom the global to the local A-system which preserve 

1. the PN assumptions (2) and 

2. the spatial isotropy conditions (5). 

The answer is 

x~*(X '~)=z~(X °) + e ~ ( X  °) [ X " +  ~sc2A.X 2 (A-:~X)x']  +~/~, (8) 

where we have omitted a label A on all quantities on the right-hand side 
and where 

dz.CS) (9a) 
e~°- dS ' 

o i dzi 1 
e= = e . - ~  + ~ e=(S), (9b) 

e o e  a = 1 + ~ gij + 2C z ] 

In these equations zg(S) is the global-frame representation of the central 
worldline (X °, X) = (S, 0), A~ is given by 

d2 z i 
2 i • A. _= c e.-~-~ + 0(2) (10) 

and T/~ = O(X z) as X ~ ~ 0 with 

~/0 _ ~(Xa) _ 0(3), T/i = 0(4). ( 1 1 )  
£3 
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The velocity v of body A is given by 

v i dzi 
= d--S + 0(2) (12) 

and R~(S) is a slowly changing orthogonal matrix. 
In other words a solution of the question raised above requires the fol- 

lowing arbitrary elements (s. Fig.3) 

Fig. 3. Elements needed to describe the relation between the global and some 
local reference system 

• a worldline /:A in a differentiable manifold V4, 

• a Special parametrization S along/:A, 

• the global z"-representation of £A, z" = z~(S), 

• along £A: 
- a slowly changing orthogonal 3 x 3 matrix 

' '  d R y d S  0(3) R . R b  = ~ .b ,  = 

- three quantities e~(S) 

• around f-.A: a function ~(X a) with ~ = O(X 2) when X ~ ~ O. 

(13) 

Note that  this answer is independent of the value of the curved space- 
time metric. We would like to indicate the main steps of the proof: the PN 
assumptions and spatial isotropy conditions lead to the relation 
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0, .  0,  V ( 0 , .  0 ,v~  
f .~ -g -~  Oxb - _2 + f .~  ox~  g ~  ] ~.b + o(4), (14) 

independent of the metric gt,~- Here, fgv refers to the flat space metric in 
global coordinates, i.e. 

f ,~  = d i a s ( - 1  , +1,  +1, +1).  (15) 

Without  loss of generality we can write 

~.  = F ( x  ~) = ~ . ( x  °) + e"~(x°)x o + ~ " ( x ° , x ° ) ,  (~6) 

where the first term is independent of X" ,  the second linear in X ~ and the 
third at least quadratic in X"  when X ~ ~ 0. Let us define 

d2 z v 
" (17) i ,~a  A a  - fg , ,e ,~ d S  2 

~ i  = ea  ~ , 

then (14) leads to 

OX--- ~ + ~ - ~  = - ( A ° X  ~) ~bo + O(4)- (18) 

This equation is easily recognized as the equation for conform~ Killing 
vectors of Euclidean 3-space and since ~ = O(X 2) when X"  ~ 0 it has a 
unique solution ("inverted translat ions ' )  in the form 

.~ = ~ AaX 2 - X " ( A . X )  + 0(4).  (19) 

The uniqueness of ~ "  then leads to the uniqueness of our PN kinematics. 
Fig. 4 shows the various formal similarities between our relativistic and the 
Newtonian kinematics. 

3 Second basic ingredient: new field and matter  
variables (and associated "transformation theory") 

3.1 N e w  field a n d  m a t t e r  va r i ab l e s  

Essential for our new framework is the use of new f i e ld  and m a t t e r  variables. 
If we write the metric tensor in the form (2°) 

goo = - exp - ~-~ 

4 
g0i = - ~ - ~ w i  (20b) 

g~ = +-yi~ e~p ( + ~ ) ,  (20c) 
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Fig. 4. Formal similarities and contrasts between our relativistic and the Newto- 
nian kinematics 

then the ten degrees of freedom are represented by one scalar field w, one 
vector field w i  with 3 degrees of freedom and one second rank symmetric 
tensor field ")'ij with 6 independent components. We have already learned 
that  modulo 0(4)  "yii represents the metric of some fiat 3-space; therefore 
there exists preferred spatial coordinates zi~ such that 

"[ij = ~ij + 0(4). 

The spatial Einstein equations then are automatically fulfilled at the first 
PN level. The remaining Einstein equations 
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R ° ° _  - ~ 8 7 r G ( T ° ° - l T g ° ° )  

R°i  - 87rG ( T ° i  - l 

then take the form 

3 2 4 + +  0,0i i = + 0(4) 

A w i  - O~jwj - OtOiw = -47rGtr i + 0(2)  

with the new mat ter  variables 

(21a) 

(21b) 

(22a) 

(22b) 

The variable o" plays the role of an "active gravitational mass density", ~r i 
the role of an "active mass current density". Note, that neither for the def- 
inition of these mat ter  variables nor for the formulation of the two Einstein 
equations (22) had we to assume any specific structure for the mat te r  distri- 
bution (such as a perfect fluid energy-momentum tensor). In fact, using our 
new field and mat te r  variables, the exponential representation of the metric 
as in (20) and leaving the structure of mat te r  completely open leads to a PN 
framework which is much more compact and simpler than the classical one. 
As can be seen from (22) the  field equations even become linear! Moreover, 
the freedom in the time coordinate leaves the following electromagnetic-like 
gauge invariance: if (w,  wi)  is a solution of Einstein's equations (22) then  so 
is 

= w - ~ 0 , ) ,  (24a) ?j) t 

w~ = wi + l aiA, (24b) 
4 

where A(x g) is some arbitrary differentiable function. This gauge transfor- 
mation corresponds to a change of the time coordinate according to 

= t ~ A ( t , x ) .  (25) t I 

This gauge invariance is formally useful in many respects and the formalism 
for the metric potential w# - ( w , w i )  - (w,w)  becomes very similar to 
classical electrodynamics. E.g. we can introduce gauge-invariant gravito- 
electric and gravito-magnetic fields e and b in the form 

T OO + T'"  
- -  c z ( 2 3 a )  

TOi 
or i - -  ( 2 3 b )  

c 
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4 
e -- Vw + ~--~ 0tw 

b - - 4 V  × w 

which obey Maxwell-like equations: 

V . b = 0  

V x e =  b 

3 2 V .  e = - ~-~0~ w - 4~rGcr + 0(4) 

X7 x b = 40~e - 16~rGtr + 0(2). 

(26a) 

(265) 

(27a) 

(27b) 

(27c) 

(27d) 

Note that in each of the local systems one can introduce local metric po- 
tentials (W A --= (wA, wA)) by 

nolo(x) = w : ( x )  (28b) 

GAb(X)=6abexp(+-~wA(x)) + O(4). (28c) 

These local potentials satisfy field equations of exactly the same form 'as 
equations (22) above, for example 

3 0 2  4 0  0 
A x W  + c -50T ---2W + c 20T OX ~ W, = -4~rG27(X) (29) 

etc. Here, X refers to the corresponding local coordinates and ~7(X) is the 
active gravitational mass density as recorded in the local coordinate system 

~?(X)= (T°° ÷ T~,) (30) 
x 

We now come to the structure of the PN metric. For simplicity we will 
choose the temporal  harmonicity condition which reads 

= D,~ ° = --~(Ot~, + 0,~,,) + 0(5) (31) 0 

in the global system. Einstein's equations then take the form (note the 
compactness and simplicity of the field equations!) 

[]w~ ---- -4~rG¢ ~ + 0(4, 2). (32) 
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Here, 0(4 ,2)  = 0(4)  for # = 0 and 0(2)  for/ ,  = i. Equations (32) can imme- 
diately be solved with the boundary conditions tha:t the metric approaches 
the Minkowski metric at (past null) infinity (i.e. the metric potentials w~, 
vanish at infinity). Because of the linearity of the field equations the solu- 
tion can be written as a linear superposition of the contributions of the N 
bodies in the form 

where 

N 

%, (z) -I- 0(4,  2), (33) 
A = I  

a3~' ( I"-x ' l  x')  (a4) 
w.a(~) = o I x - x ' l  ~" t q: - - - - - Z - '  " 

Here, the q: sign stands for the t ime-symmetric average, i.e. 

Indeed, we can use the t ime-symmetric solution instead of the retarded one 
because they lead to different physical Predictions (in the near Zone) at 
higher post-Newtonian orders (2.5PN). Eqs. (33) and (34) describe the full 
solution of the field equations in the global system in harmonic time gauge 
at the 1PN approximation. 

3.2 T r a n s f o r m a t i o n  t h e o r y  

In each of the N local systems the field equations 

+ -~0~ (o~w ~ + o~w~) = - 4 ~ a ~  ~ + 0(4) (36a) D x W  ~ 

A x W  A - &, (OTW A + ObW A) = -4~ra27 A + 0(2)  (36b) 

are linear but we cannot impose any boundary conditions as we did in the 
global system. We now decompose the local metric potentials w A ( x )  as a 
sum of two contributions 

w 2 ( x )  + A - - a  = w ~ + w~ ,  (at) 

where W + A ("self potentials") is the piece that  is locally generated by body 
- - A  

A as seen in its corresponding local frame and W~ ("external potentials") 
is a remainder which is generated by all the other bodies in the system and 
also by inertial effects due to the accelerated motion of the local system. 
We define the self-part W + A by 

w ~ ( x A )  = v I X ; - ~ l  TA ~: c ,X~ . (as) 
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Together with the solution (33) in the global system and the transformation 
laws of the metric potentials that we will discussnow this also fixes the 

• - - A  

external part of the metric W~. In other words, in each of the N + I  reference 
systems the solution of the field equations are now available in explicit 
form given the transformation laws for the metric potentials between the 
global and the local systems. Remember that the metric in the global system 
is represented by (20) (i.e. by w,(z)),  whereas in the local A-system it 
is represented by (28) (i.e. by w A ( x ) ) .  The relation between the various 
metric potentials is simply derived from the usual tensorial transformation 
rule for the metric tensor 

with 

W[~(x])]= ox~ ox~ c]~(x])  

• . ( x )  = z . ( x  °) + e~(x  ° + -=~) + 7". 

From this one gets 

with 

where 

where 

~ . ( ~ )  ~ o ~ A = A . o ( x  ) w ;  ( x )  + 8 .  ( x )  

(39) 

(40) 

A00 + (41) 
[ A . a ] =  AiO Aia v i Ra ] '  

c 2 
A~Aa) B o = ~ - l n ( A  ° A  ° -  o o 

C3 0 i 0 i 
Bi = --~(AoA o - A~,A~), 

(42a) 

(42b) 

A~ - O# ' (X~)  (42c) 
OX ~ 

is the Jacobian matrix of the coordinate transformation. Note the afllne 
character of the transformation law for the metric potentials. Let us now 
consider the decompositions 

= . ( ~ )  + ~ . ( ~ )  (43a) 

w ~ ( x )  + ~ --~' = W ~.(X) + W,~(X) (43b) 

A in which w + A = w . ,  as defined in harmonic gauge by (34), 

- - A =  E B W. w . ( x )  
B:~A 
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and where W + A(X)is  given, in harmonic gauge, by (38). In order to derive 
- - A  

an expression for W~(X) we need detailed transformations laws for W + 
and W separately. These detailed transformation laws read: 

+ A  A 0 w .  Ca:) = . ( x )  + 0(4,  2) (44a) 

= w g ( z ) = A , , W ,  CX)+B,(X)+O(4,2). (44b) 
B#A 

Note how remarkably simple this result is: the self-part of the metric poten- 
tial transforms just with the homogeneous part of the full transformation 
(40). The Newtonian analogues of these transformation rules would be 

~+ A(*) = fa d3x' p(t,x') p(T,X') ~ : V I  - f~ d 3 X ' ] y : ~ l  --- g a(x) (45a) 

d2z X (455) ~,~'(~) = ~a(x)  + c(t) + ~ -  , 
B#A 

where ~A represents the additional (effective) potential which must be 
added to the locally generated one (45a) when describing the gravitational 
dynamics in a local accelerated frame, i.e. 

~ACX ) : ~ ~B(~) _ oct)- d ~ .  ~i~ x. 
B~A 

(46) 

From this we see that the inhomogeneous part B A on the r.h.s, of (40) con- 
tains inertial terms due to the acceleration of the local A-system. Equations 
(44) constitute a central point in our framework. We concocted three inde- 
pendent proofs for (44); an elegant proof which employs certain invariance 
properties of the time-symmetric Green's function for the d'Alembertian 
can be found in Damour et al. (1991). The detailed transformation laws 
(44) lead to a consistent and complete formulation of our method in the 
"continuous" case, i.e. without skeletonizing the bodies. This "continuous" 
formulation is outlined in Fig.5. 
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Fig.  5. The "continuous" formulation of the method 



61 

4 Third  basic  ingredient:  m u l t i p o l e  and t idal  m o m e n t s  
or the  "skele tonized" formulat ion  

In our framework we use new definitions of collective variables such as "mul- 
tipole moments" ,  "center of mass" or "tidal moments".  Characteristics of 
the new "relativistic multipole moments" (of body A) are: 

• they are expressed in terms of the mat ter  distribution of body A as seen 
in the local A-frame: ~ ( T ,  X); 

• the locally generated relativistic potentials, W + A(T,X),  can be ex- 
pressed in terms of them (Blanchet and Damour  1989). 

Characteristics of the new "relativistic tidal moments"  are: 

• they are expressed in terms of the local-frame "external" gravitational 
- - A  

potentials: W~ (T, X); 

• they are gauge invariant in the sense described above; 

• the local evolution equations for the mat te r  distribution of A can be 
expressed in terms of + A W a and of the tidal moments.  

The (BD) mass and spin multipole moments of body A are defined by 

1 " ' "  [ C'-2- J A--frame 

1 Froo] 
+ 2(2l + 3)c 2 d T  2 d s X  X 2 X < " ' X ' ~ ' " "  X"'>  [ c2 J A 

_ 4 ( 2 / + 1 )  d Ld xx<bxo,...xo,> 
(I + 1)(2I + 3)c 2 d T  A 

and 

(47a) 

f • [ T°° ] 
sA , . . . , , : (T )  -- I d a X  ebc<,,,X,,,  - -  (47b) I 

J A  [ C J A--frame 

Here, the brackets < >  indicate a symmetric and trace-free (STF) projec- 
tion. Hence, the mass and spin moments  are Cartesian STF tensors. The 
relativistic tidal moments  also have this property; they are defined by 

A - - A  
G~,~2...~ , (T) = 0<~, ~2...~,_, E~, > Ix=0 (48a) 

... = 0<~,~...~,_, ~,>lx=0, (48b) 
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- -  m 

where E and B are the external gravito-electric and gravito-magnetic fields 
belonging to the local A-system: 

--A 4 - -A E~ = O~W A + - jOrW. (49a) 

- - A  m A  B. =e.bo&(--4Wc ). (49b) 
The multipole mass and spin moments have the remarkable property that 
the serf-potentials can be expressed in terms of them in a very simple man- 
ner. The following relativistic multipole expansions hold everywhere outside 
body A: 

+ ~Or(A ~ ~) + 0(4) (50a) 

Wo(T,X)=-aZ.  0~_~ 

+ l--~e.b~0bL--1 

-- IO~(AA -- )~) + 0(2) ,  (50b) 

where L - -  ala2  . . . a l ,  OL ~ Ol/OX al ...(gX a~ and ML -- M~, , . . . , ,  (the 
A A - )~-terms are pure gauge). This means that outside body A the self-field 
generated by body A can be skeletonized by means of the mass and spin- 
moments, MI.,SL~ of body A itself. In other words, the self-field outside 
body A is completely determined by its mass M(T), its dipole moment 
M~(T), quadrupole moment M~b(T) etc. and by its spin dipole S~(T), spin 
quadrupole S~b(T) etc. 

In a dual manner, the relativistic tidal moments, Gr.,HL, completely 
determine (modulo gauge terms) the ezternal potentials in the local A- 
system ( ' =  d/dT): 

1 [.~GA(T) -F WA(TA,XA) = ~ 
l 

-F ~OTA A + 0(4) 

W.(T~,X.) = ~ 
! 

2(211+ 3)c2 X2"~L eA(T)] 

21 + 1 @ a I , ~ A ( T  ~ 

( l  + - f ) - ~ i +  3) "~ ,~L~ 

+ 

(51a) 
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where 

, ] ~.bo2bL-l±X£ I(T) 
+ 4(I + 1) - . 

- ~OaA A + O(2), (51b) 

)(L --= X <c> -- STFLX r'. (52) 

This means that the Combined tidal-inertial forces experienced by body 
A can be "skeletonized" by means of some gravito-electric tidal monopole 
G(T), dipole G(,(T) ,  quadrupole Gab(T) etc. and some gravito-magnetic 
tidal dipole Ha(T), quadrupole Hab(T) etc. In the Newtonian limit only the 
gravito-electric tidal moments survive (see the discussion in Sec. V I A  of 
Damour et al. 1991). 

5 Equat ions  of  mot ion  

5.1 D ' A l e m b e r t ' s  a p p r o a c h  to t h e  p r o b l e m  o f  m o t i o n  

We now come to the problem of equations of motion. There are several 
principles which might be used to derive equations of motion. Let us first 
describe them within the familiar framework of Newtonian dynamics. In 
Newton's viewpoint we might consider some body from an inertial frame 
(x) and compute the acceleration of each mass clement from Newton's law 

(dm)a = dF. 

Integration of this equation over body A then leads to the equation of trans- 
lational motion in the inertial frame. However, equally well we may derive 
this equation of motion in the manner of d'Alembert as an equilibrium 
condition of the form 

A [ d F  + dFinerti~J] = 0 (53) 

formulated in the accelerated system that is comoving with body A. Now, 
the Euler equations in the local accelerated system read 

O?A(X) 0 
o----V- + o-xS [pAv~] = 0 (54) 

O(pA V~) 0 • i i tii] 0 - e l f  [ f a v~ v~ + = o~-k-~u~ , (551 Ot + 

where U~t tr is the total effective potential (including inertial effects) to be 
used in the local accelerated frame, i.e. 

a 2 ~  x = ~ ~ + ~ ~  (58) U~(X)=U(zA + x ) - o ( t )  at2 
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in terms of the notation (45), (46). By integrating equations (54) and (55) 
one gets 

d , ~ A ( 0  = 0 (57a) 

d2 f A ~3 ,. OU A 
~ ¢ ( t )  = " ~ P  o x ~  (57b) 

- -A 

-~8 i (t) = ~iab OX a 

where 

m¢(~) _-- f~ d3x px~ (5s) 

A 3 a b 8¢(~) ~ ~iab d X DXAV~.  (59) 

Let us now introduce some (Newtonian) tidal moments by 

-UA(X)= Z 1 A ^L 1 A <{i -~, g L ( ~ ) x  ~--- Z ~. gl t ' ' ' i l (~)x  " " x i l > "  (60) 
l I 

Equations (57) then take the form 

d m A ( t )  
d~ - o (61a) 

- ~  _ ~ 1 .~ A A ~ (61b) ~ m L g i L  = m A g  A q- m j  gij -}-... 
I 

d8¢(7~) CiabmA A ~ m A  A A A 
d~ - Z y aLgbL -~ "lab a gb ~- ~iab?Ttajgbj "~ . . . .  (61C) 

l 

Let us now attach the spatial origin of the accelerated local A-frame to the 
matter  distribution of body A. We do this by choosing this origin as the 
center of mass of body A, which means imposing the vanishing of the mass 
dipole moment  

Since this equation should be valid for all times we also have 

d2mA( t )  -- O. (63) 
dr2 
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Inserting the information (63) into (61b) we get the translational equations 
of motion in the form of an equilibrium condition in the local accelerated 
fraxne:  

1 a A 0 = mAg A + 0 + -~mjkg~j k + . . . .  (64) 

To transform the d'Alembert-like equation of motion (64) (equilibrium be- 
tween "real" and "inertial" forces) into a more usual Newtonian-like inertial- 
frame equation of motion it is sufficient to note, from (56) and (60), that 

0~  A d2z~ 
g~ = ~ :A = B~A ~ 0'~BCzA) d~ " (65) 

Separating out the inertial term --~MA (where Z~M A denotes the center- 
of-mass of body A) gives the inertial-frame translational equation of motion 
of body A: 

B#A 

5.2 Relat ivist ic  t idally expanded  equat ions  o f  m o t i o n  

The above d'Alembert approach to the problem of motion can conveniently 
be transferred to our PN framework. The local evolution equations in the 
local frame are obtained from 

0 
0 = V z T  `~ - o x z T  '~ + I ' :~T "~ + _T'~T '~" (67) 

and read 

0--T 1 + - ~  27" + ~  1 + - ~ -  T ~b = F ~ ( T , X ) + O ( 4 )  (68a) 

0_~27 0 ~ 10._Tbb 1 OW + - ~  27 - c 2 0 T -  - -~ Z - - ~ -  + 0(4) (68b) 

with the local force density 

1 =( ) F ~ ( T , X ) = 2 7 E o + B ~ 2 7  ~ Z E +  × B  (69) 
C C2 a 

Note the simple Lorentz form of this relativistic force density! Here, the 
local gravito-electric and gravito-magnetic fields are described by 

E~(W) = O~W + -~OrWo (70a) 

B a b ( W )  = Oa(--4Wb) -- Ob(--4Wa). (70b)  
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As introduced above, we can now decompose the full potentials W into self- 
and external parts and use the expansions (51) of W into tidal moments. 
Using the relativistic definitions for M A and M A as in (47a) one finds that 
two remarkable things happen: i) all self-effects due to the self-potentials 
W + cancel and ii) all "bad expressions" which cannot be combined to yield 
BD moments also cancel. Finally we get equations of the form 

dM A 
dTA - ~'°A [MA GA1 L ~, ~.j+o(4)  (71a) 

d2 Ma~ 
dT~t -- ~ A  [M A c A  ¢wA HA] [ L , " L , ~ L ,  L] + 0 ( 4 )  (71b) 

aSYdTA = Lo-a [MLSA~, a ~, n~] +0(4/2) .  (71c) 

In (71c) the symbol 0(4/2) means that the usual definition (47b) appearing 
in the 1PN framework gives the spin vector and therefore the spin motion 
only to Newtonian order, but that a post-Newtonian definition for the spin 
vector exists such that the torque on the r.h.s, of (71c) can be expressed 
in terms of our internal and external moments (Damour et al. 1992b). The 
r.h.s, of equations (71) read explicitly 

1 1 I ~ G L  ~ Fo - c2 ~ ~ {{l + l)Mz, OL + (72a) 

$'~ = E MLG~L + c2(1:4_ 1) 
! 

~abc z,¢" ~r 

~'abc I'm) ~/~bLI~cL 4(I + 1) ~abcSbLgcL 
+ c2(l + ~"(l + 2)2 

+ 2 )  e'abcSbLGcL -- 2/3 + 7/2 + 15 /+  6 M a L ~  L 
c2(l c2(i + 1)(21 + 3) 

2/3 + 5I ~ + 12/+ 51~faLG L 
c2(/+ 1) 2 

l 2 + l + 4 ~ r  - 
c~(l%-T) o~.v~ + 0(4) (72b) 

La__= E 1 1 ~.eabeMbLGcL + -~ . . . .  (72c) 
! 

Having in hand the results (71), (72) we can now generalize to the rela- 
tivistic context the d'Alembert approach to the problem of motion. Let us 
attach the spatial origin of the local A-frame to the matter distribution of 
body A by requiring the vanishing of the BD mass dipole moment: 

MA(T) = 0. (attachment condition) (73) 
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Note that this is a new, specific way of defining a relativistic center of mass 
for body A. Combining (71b) and (73), we then get the full PN translational 
equations of motion in the form of a local equilibrium condition 

F ,  = 0. (74) 

Then, the Newton-like form of the PN equations of motion, i.e. the 
relativistic analogue of (66) giving now the acceleration of the global-system 
coordinate position of the PN center of mass of body A, z~, is obtained by 
separating out the inertial term,"--~A + 0~c-2), hidden in the PN tidal 
dipole moment  Ga appearing in the right-hand side of (72b). Finally, to 
make these equations fully explicit we have to do four things: 

1. We take advantage of the freedom of choice of the special parametriza- 
tion S along I:A to set the monopole gravito-electric tidal moment  
G ( T )  - W ( T ,  0) to zero (weak effacement condition). 

2. We also fix the freedom of choice in the orthogonal matrix. For example 
the choice R A = 6ia suggests itself as a particularly simple one. 

3. We must compute the expressions for the remaining tidal moments,  
G A, A A A G a b , . . . ,  t I  a , H a b , . . .  in terms of the PN multipole moments of the 
other bodies B ~ A (see Damour et al. 1992a). 

4. Finally, to obtain a closed system of equations of motion, we need to 
specify somehow the time evolution of the multipole moments of order 

= Gabc, . . . } .  The logic of the derivation of com- 
pletely explicit PN equations of motion is summarized schematically in 
Fig. 6. For the detailed implementation of this method to the simplest 
"monopole approximation" (Lorentz-Droste-Einstein-Infeld-Hoffman e- 
quations of motion) see Sec. VII C of Damour et al. (1991). 
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Tfibingen, FRG 

1 I n t r o d u c t i o n  

This article contains a brief overview over measurable general relativistic ef- 
fects in the solar system. Unfortunately, because of time constraints, several 
important topics, especially those related with specific tests of Einsteinian 
gravity were not discussed during the Bad Honnef Meeting. Among the 
more interesting topics not discussed are e.g. new developments for improv- 
ing the test of the (weak) equivalence principle such as a Satellite Test of the 
Equivalence Principle (STEP). The goal of STEP is a test of the equivalence 
principle at a level of 10 -17, roughly a six orders of magnitude improvement 
over previous tests by a free-fall experiment in a drag-free satellite (see e.g. 
Worden et al., 1990, Barlier et al., 1991). 

2 Grav i ta t i ona l  redshif t ,  c lock rates  etc .  

To classify the various experiments related with General Relativity it is 
useful to start from some explicit form for the space-time metric. E.g. in the 
vicinity of the Earth using local geocentric coordinates (cT, X a) the metric, 
satisfying Einstein's equation in the first post-Newtonian approxifimtion 
might be written in the form (Damour et al., 1991, 1992) 

a00 = - exp(-2w/c  2) = -1  + 2W/c  ~ - 2 w 2 / c  4 + o(6) (za) 

Go,, = --4Wa/C 3 (lb) 

cab = 6ab exp(+2w/c ~) + 0(4) = ~ab (1 + 2 w / c  ~) + 0(4). (1c) 

Here, O(n) - O(c -n)  stands for the orders of neglected terms. We see that 
at the 1PN level the metric can be represented by some scalar potential W, 
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generalizing the usual Newtonian potential and some vector potential Wa 
describing gravito-magnetic effects. It can be shown that these potentials 
can be written as a sum of two parts: 

-I- 
w = w  + w  (2) 

where W + is the self-part due to the Earth itself and W is the external part 
originating from all other bodies in the solar system. To a good approxima- 
tion W + is given by (Damour et al., 1991, 1992) 

W = G ~ +  ( - ) '  0 L l !  ( R - 1 M ~ ( T  + R/c))  , (3) 
l>__0 

where the +-sign indicates a time symmetric average, 

1 [ML(T -t- R/c)  + M L ( T -  R/c)],  ML(T  -4-R/c)= 

and L stands for a multi-index of spatial coordinates, i.e. L = al . . .  ai (e.g. 
OL = OI / ( OX"' . . . OX a' ) ). ~I~L are the relativistic Cartesian mass multipole 
moments of the Earth. To Newtonian order W is given by 

W = N - ~ ( z s ) -  a s .  X + . . . .  (4) 

Here, N is the external potential resulting from Sun, Moon and the planets 
apart from the Earth in the global, barycentric system, z~ denotes the 
geocenter and a s the acceleration of the geocenter. For the gravito-magnetic 
vector potential Wa we may neglect the external part and the self-part is 
essentially determined by the spin-vector S~ of the Earth 

W . . o  ~ G X x S s  
- 2 R - - - x -  + . . . .  ( 5 )  

The dominant general relativistic effects are related with the problem of 
time. For that reason I would like to discuss some aspects of great practical 
importance (e.g. for high precision navigation in the solar system) related 
with the realization of time scales in the vicinity of the Earth in some detail. 
To this end we consider some clock whose elapsed proper time interval dT" 
is given by 

--c2dT 2 = d S  2 = -  1 - - - - ~  c2dT 2 + d x  2 + 0 ( 2 )  (6) 

o r  

aT ( w 
+- dT= \ I  c2 2 c 2] +0(4)" (7) 

Here, the l/V-term indicates the (lst  order) gravitational redshift ~ effect. The 
best experimental verification of R is still the Vessot-Levine Gravity Probe- 
B experiment where a hydrogen maser clock on board a Scout rocket (Fig. 
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1) was flown to an altitude of about 10 000 km and its frequency compared 
to a similar clock on the ground (Vessot and Levine 1979, Vessot et al., 
1980). The flight path was carefully monitored using tracking data and 
highly precise corrections for Doppler and atmospheric shifts were applied. 

REOSHIFT SPACECRAFT 
i 

Thermal Shield Spin Axis 

Tracking T ~  

A n l e ~  < 
Signals 

tClock L Signal 

Station 

Fig. 1. The Gravity Probe-A redshift experiment 

Writing the gravitational redshift of frequencies in the form 

the experiment gave 

Ay A W  
= (1 + . ) - - -  (8) ~t ¢2 

Io~ 1 < 2 × 1 0  - 4  . 

For the problem of terrestrial clocks we can transform the metric to coor- 
dinates co-rotating with the Earth (Soffel 1989). In these coordinates the 
space-Lime component of the metric has a V(~/c = (l'~ x X ) / c  term and in 
the Lime-time part W is replaced by the geopotential, 

W -"4 ~/Vgeo = ~/Y -[-(• x X ) 2 / 2 .  (9) 

E.g. for earthbound clocks (dX = 0) we get 

+_(1-W eo/C 2) (10) 
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and 
(d~), _ f2 1 -  (W~oo/C% [1 + g(¢) .  h/c2]1 
(dT)~ f l  - 1 - (W~oo lc2 )~  - [ l+g(¢) .h /c~]~" (11) 

Here, g is the latitude ¢ dependent gravity acceleration and h the height 
of the clock above the geoid (some eqnipotential surface at mean sea level). 
This implies e.g. that the readings of the reference clocks in Braunschweig 
(PTB), FRG and in Boulder (NBS), Colorado, differ by some 5.4#s/y and 
one should keep in mind that the "accuracy" (frequency stability) of present 
clocks is of order ~ 10 -14 - 10 -15 and improvements in the art of metrology 
are very rapid indeed. Not only for the comparison of clock readings is the 
gravitational redshift of practical importance but also for the dissemina- 
tion of time, which nowadays is usually performed by means of the Global 
Positioning System (GPS). The GPS system comprises presently about 15 
operating satellites with cesium or rubidium clocks on board flying at an 
altitude of about 20 000 km and emitting time signals which can be used by 
GPS receivers for positioning and navigational purposes. 

Fig. 2. The Global Positioning System (GPS) 

Let me now describe how some geocentric time scale can be realized 
(e.g. Soffel and Brumberg 1992). First, let me note that the definition of the 
SI-second is of local nature, i.e. it depends upon the clock's position: 



74 

Def. (SI-second) = duration of 9192 631 770 periods of the radiation 
that  corresponds to the two hyperfine levels of the ground state of the 
Cs 133 atom. 

Because of this local nature  of the SI-second the times scales T T  (or 
TDT) and the international atomic time TAI have been introduced w.r.t. 
the geoid: 

"TT be a time scale differing from T = TCG uniquely by a constant 
rate, its unit of measurement being chosen such that it agrees with the 
SI second on the geoid". 

Here, T = TCG is the geocentric coordinate time. Because of (2) and 
(7) we get 

"r = T - S ( T ) / c  2 + 0(4)  

= Wgoo (w0 - g .  h) + W  

and we can split S ( T )  into a secular and some remaining part  

S ( T )  = S * T  + S R ( T )  

(12a) 
(12b) 

(13) 

with 
S* = W0 =cons t .  (14) 

Therefore, starting from the geocentric coordinate time T the t ime scale TT  
might be defined by 

TT=kET (15) 

with 
kE = I -- c - 2 S  * = 1 - 6.97 x 10 -a°. (16) 

Now, because of their stochastic and non-ideal nature  real clocks might 
not  indicate (ideal) proper time. For that  reason international atomic time 
is defined by averaging over the readings of severM reference clocks (i) in 
the world after corrections for the height above the geoid (and tidal terms) 
have been applied. We may write 

TAI = mean (r~¢t + c - 2 S R ( T ) ) i  (17) 

and one realization of terrestrial time TT  is given by 

TT(realized) = TAI + 32.184 s. (18) 

For all of this to  work clocks are synchronized by means of coordinate time, 
i.e. two clocks showing proper times ~'1 and r2 are called synchronous, if the 
corresponding T-values agree: 

vl syn T2 ~ T1 = T2. (19) 
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EARTH ROTATION 
OBSERVATIONS 

wwv 

LORAN C 

H LEAP SECONDS STEERING 
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i AVERAGE ~ . . . . .  +- 
I ' CORRECT TO 
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SOLAR SYSTEM ] 
& PULSAR 

OBSERVATIONS 

Fig. 3. Various operationally realized time scales and their connection (from 
Backer and Hellings 1986) 

Fig. 3 shows the connection between various time scales used for practical 
purposes (from Backer and Hellings 1986). Here, TDT is the old notation for 
TT. MSL stands for mean sea level, UTC for Coordinated Universal Time, 
SSB for the solar system barycenter and TDB is barycentric dynamical time. 

3 A n o m a l o u s  p e r i g e e  a d v a n c e s  

Often the Eddington-Robertson parameters fl and 7 are included in the 
metric according to 

aoo = - 1  + 2 W / c  2 - 2 ~ w 2 / c  4 + 0(6) (2on) 
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ao,  = ~ob (1 + 2.~w/c 2) + 0(4).  (20b) 

fl gives a measure of the non-linearity of the metric theory of gravity and 7 
is the space-curvature parameter.  In Einstein's theory of gravity ~ = 7 = 1. 
With these parameters the relativistic perigee advance of some satellite or 
planetary orbit in the central field of mass M is given by 

G M  
~ = 2~(27 + 2 - Z)c2a(1 - ~ )  rad/rev. (21) 

Fig. 4. The LAser GEOdynamical Satellite LAGEOS 

Let me start with a discussion of satellite orbits. At this place I would like 
to mention that  we are now in a fortunate position to have the most general 
post-Newtonian equations for satellite motion e.g. in the local geocentric 
system. In the DSX-framework this geodesic equation can be obtained from 
the Lagrangian 

£ = 1 dT  2 ~-ff v4 - W2 + ~ W v  - 4Way" (22) 

and the complete PN expressions for W and W~ can be found in (Damour 
et al., 1991, 1992). Measurements of certain satellite orbits can be achieved 
by means of Satellite Laser Ranging (SLR). To this end lasergeodyna.mical 
satellites have to be used such as LAGEOS (Fig.4), a completely passive 
satellite with a radius of 30 cm and a weight of 410 kg. Its surface is com- 
pletely covered with 426 laser retroreflectors which reflect incoming laser 
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light back in the same direction as that of the incoming pulses. One typi- 
cally works with laser pulses of about 200 ps or 6 cm length at pulse rates 
of about 4 Hz. Presently achieved accuracies are at the cm level. Such SLR 
measurements are routinely used for the determination of Earth's rotation 
parameters and the the Earth's mass multipole moments. Mark Vincent 
(1984) has tried to determine the PPN parameters fl and 7 from LAGEOS 
data; however his derived values were never officially published because 
at that  time the numerical program used (UTOPIA from the University 
of Texas) had still serious problems with relativity, which meanwhile have 
been solved. An italian group around A. Milani (1992) has tried in w in  to 
determine values for fl and 7 just from LAGEOS data with an independent 
satellite program. The problem is that  the LAGEOS orbit essentially deter- 
mines the value for GIllie, and since the eccentricity of the LAGEOS orbit 
is very small the relativistic deviations from Newton's 1/r2-1aw are mainly 
absorbed in the GMe-value. Other relativistic effects like the anomalous 
perigee advance might be absorbed by the higher multipole moments of the 
Earth. Likely one has to use the data of a second satellite with a different 
value for the semi-major axis to get values for the relativistic parameters. 

As far as the relativistic advances of planetary perihelia is concerned we 
have to address the old solar quadrupole controversy. In the PPN framework 
the anomalous advance of planetary perihelia is given by 

3~rR~ Aw=2~r(27+2-~3)c2a(G1Me2)_ + a 2 ( l _ e 2 ) 2 J 2  O, (23) 

where J2 O is the quadrupole moment of the Sun. Probably the most reliable 
determination of J2 ° results from helioseismological measurements of the 
5 rain oscillations of the Sun (Brown et al. 1989). These measurements 
indicate that J2 O is of order 2 × 10 -7 and therefore can be neglected for 
the problem of relativistic advance of planetary perihelia. In that case data 
from planetary radar ranging (mainly to Mercury) gave 

2 7 + 2  - f l  
- 1.00 4- 0.002 

3 

and if the value for 7 is taken from gravitational time delay measurements 
(see below) one obtains (Shapiro 1990) 

fl = 1.4- 0.003. 

Radar measurements determine the anomalous perihelion shift of Mercury's 
orbit (42.98"/ceu.) with an accuracy of about 0.5%. It is interesting to 
compare these numbers with those for certMn binary pulsar systems, such 
as PSR 1913+16 or PSR 1534+12. For these pulsars the times of arrival 
(TOAs) of radio pulses can be determined extremely accurately (at the 
3 #s level in fortunate cases; Taylor et al. 1992) from which high-precision 
system-parameters can be deduced. The anomalous periastron advance for 
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PSR 1913+16 [PSR 1534-t-12] was found to be 4.23 [1.76]°y -1 and the 
agreement with the prediction from Einstein's theory is better than about 
1% (Taylor et al. 1989). 

4 " L e n s e - T h i r r i n g "  e f f e c t s  ( g r a v i t o m a g n e t i s m )  

Gravitomagnetic effects arise from the time-space components of the metric 
tensor or of the gravito-magnetic potential W~. There is indirect evidence 
for the occurence of gravito-magnetism in Nature (Nordtvedt 1988). If one 
writes the metric tensor in barycentric coordinates then one will find a term 

A GM$v~ (24) 
goi -~ c2-- ~ , 

where A = 4 in Einstein's theory of gravity. If we then transform the metric 
to the geocentric system this term is precisely canceled in Einstein's the- 
ory in accordance with the equivalence principle; if we keep the parameter 
A, however, we will find anomalous distance oscillations of satellite orbits 
proportional to A - 27 - 2. Assuming an accuracy of about 10 cm for the 
LAGEOS orbit one finds (Nordtvedt 1988) 

A - 2")' - 2 < 0.4- .004. 

As is well known gravitomagnetism leads to an additional spin preces- 
sion ("dragging of inertial frames") of some (torque free) gyroscope w.r.t. 
"fixed stars", often referred to as the Schiff (or Lense-Thirring) precession. 
In Einstein's theory to PN order the total relativistic precession rate in the 
local frame of the gyro is given by 

l v x a  3 v x V W  2 V x W  (25) 
2 c - - - - ~  + 2 c 2 + c 2 

Here, the first term describes Thomas precession, the second term the geode- 
tic (or de Sitter-Fokker) precession and the last term is the gravito-magnetic 
Schiff precession. Measuring this precession of spin axes is one goal of the 
weU known Stanford gyroscope experiment (NASA'a Gravity Probe B, GP- 
B; see e.g. Everitt 1974, Lipa et al., 1974, Worden et al., 1974, Lipa et al., 
1978, Bardas et al., 1989). The goal of the experiment is to measdre the 
geodetic effect to better than 0.01% and the frame-dragging effect to better 
than 1%. 

According to the latest design a drag free satellite will house two pairs 
of gyros and a 4 m focal length reference telescope with folded optics, all 
made of fused quartz and attached to a rigid quartz block. The quartz 
block is cooled by liquid helium to a temperature of 1.6 degrees K. The 
four gyros bear coatings of superconducting niobium, are electrostatically 
levitated and are spun by jets of helium gas until they rotate with about 
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Fig. 5. NASA's Gravity Probe B (GP-B) experiment. The relativistic precession 
rates of gyroscope whose spin vector is parMlel to the line of sight to a guide star 
and located in the orbital plane of a 650 km polar orbit. The geodetic precession 
is in the plane of the orbit and has a predicted value in Einstein's theory of 6.6 arc 
sec/y. The Lense-Thirring precession is in the plane of the celestial equator and 
in the same sense as the Earth's rotation; its predicted value is 0.042 arc sec/y 

2000 rev./s. After the gyros rotate with their nominal speed the helium gas 
is evacuated so that  they will lose only a quarter of a percent of their spin 
rate over the period of a year. the readout of the gyros' spin axes takes 
advantage of the magnetic (London) moment  of rotating superconductors 
aligned with the spin axes. A tilt of the spin axes cml then be monitored 
with SQUID magnetometers.  

The present status of GP-B is that  the construction of major  ground- 
based test facilities have been completed and first tests have been successful. 
There always has been a problem with the reference star for the pointing 
of the telescope axis, since the proper motion of the originally selected star 
Rigel is not known with sufficient accuracy. For that  reason one is presently 
looldng for other star candidates with sufficient radio brightness such that  
i t  can be monitored also with VLBI. 

In the motion of artificial satellites gravitomagnetism leads to a secular 
nodal drift of satellite orbits (the satellite's orbital angular momentum rep- 
resents the spin vector in this case). However, this gravito-magnetic drift of 
the nodes of satellite orbits is very small; e.g. for the LAGEOS orbit it is 
roughly comparable with the effect of the Newtonian I = 12 mass multipole 
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moment of the Earth. Because these multipole moments cannot be mea- 
sured with such high accuracy presently it seems impossible to recover the 
gravito-magnetic precession from the analysis of one single satellite orbit. 
However, in first order perturbation theory the nodal drift due to multipole 
moments is of the form 

m (1) [A~(Y, )Lot. = c o s Z . e ( a , e ,  even powers of s i n 0 ,  (26) 

where I ,  a, e are inclination, semi-major axis and eccentricity of the orbit. 
This implies that if we consider a second satellite wit the same values for 
a and e but with an inchnation I ~ = 180 ° - I,  then in the sum of the 
two nodes the contributions from the multipole moments cancel (to a very 
high degree). This ides goes back to Ignazio Ciufolini (1986a,b; see also 
Casotto et al., 1990) and is now called the LAGEOS III problem (the orbit of 
LAGEOS II, expected to be launched in October 1992, will have a different 
inclination). Two assessment studies (one from the Italian group and one 
from the University of Texas in Austin) and an evaluation by some NASA 
advisory panel came to the conclusion that ~2LT might be measurable in 
such a LAGEOS I+III  experiment with ,-, 10 % accuracy, given three years 
of data. Presently the launch of LAGEOS III is scheduled for 1994 with a 
Thor-~ rocket, whereby the precise orbit requirements might be fulfilled. 

5 G e o d e t i c  p r e c e s s i o n  

The geodetic precession in Einstein's theory of gravity should lead to an 
anomalous precession of the lunar node and perigee of the order of 2" per 
century. Writing 

&M = 2"/100y X (1 + h), (27) 

Shapiro et al. (1988) were first able to measure h by means of Lunar Laser 
Ranging (LLR) data. LLR data obtained between the years 1970 and 1986 
were analyzed and used for the simultaneous estimation of 335 parameters 
out of which about 250 are time dependent Earth's rotation parameters. 
It is amusing to note that only from these data (i.e. only from measuring 
the distance to certain laser reflectors on the lunar surface) the mass of 
Jupiter could be determined with an accuracy of about 10%. The analysis 
of Shapiro et al. (1988) gave 

h = 0.019 -t- .010, 

where systematic errors had been taken into account. Two more recent 
measurements of the lunar geodetic precession by the JPL group (Dickey et 
al., 1989) and by the german group (Mfiller et al., 1991) essentially confirmed 
the Shapiro et al. valu~ for h. In Miiller et al. (1991) about 6300 LLR data 
from the period 1969 - 1990 were used to determine the value for h (among 
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other parameters relevazlt for tests of metric theories of gravity); they find 
h = 0.002 4-0.01[0.002], were the formal 1G error is given in square brackets. 

6 Light deflection, signal retardation 

In Einsteinian gravity light rays are geodesics w.r.t, gj,~ and along light rays 
ds = 0 (light rays axe null geodesics). From these conditions the equation 
for some light ray to PN order (with paxameter 7) in the spherical field of 
the Sun takes the form 

x ( t )  = x0 +  c(t - t0) 

_ ( 7  + 1)GM® 
c 2 

x .  fi d - t0)]] 
[filn ( r :  ~ x o . ~ h ) +  ~ - [ r -  r0 - c(t . 

(2s )  

Here, fi is some "Euclidean" unit vector in the direction of the ray at x0 
and d connects the center of the Sun with the point of closest approach of 
the unperturbed light ray. E.g. the angle of light deflection of starlight by 
the Sun is given by 

A~ _~ 1.75, (I_V)_./~Od. (29) 

The accuracy of present ground based optical measurements is fairly poor. 
However, instead of measuring the light deflection in space one can also mea- 
sure the corresponding effect in the time domain, called the (Shapiro) grav- 
itational time delay. Time delay experiment involving the VIKING space- 
crafts (Reasenberg et al., 1979) gave 

7 = 1. + 0.002. 

The gravitational time delay plays an important role in Verly Long 
Baseline Interferometry (VLBI)J In VLBI the radio signal of distant radio 
sources (quasars) axe received by several VLBI antennas. These antennas 
usually have a great spatial separation from each other and no direct broad- 
band connection. At each of the stations the radio signal is transformed from 
the GHz to the MHz region and together with time tags from some local 
oscillator (typicMly H-masers) serving as phase reference they axe recorded 
on video tape. An interference signal is then produced by cross-correlation 
of the tape data in a correlator. VLBI is one of the most precise astrometric 
techniques. With a modern Mark III system residuals now ly in the 30 - 50 
ps region, i.e. for angles one achieves sub mas accuracies. This implies that 

1 Very accurate PN VLBI theories have been published by Kopejkin (1990) and 
Soffel et al., (1991). 
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t h e  light deflection (more precisely the t ime delay) in the field of the Sun 
is measurable even for sources lying close to 180 ° from the Sun. A recent 
analysis of VLBI data  by Robertson et al., (1991) gave 

7 = I .  ± .002[.00096]. 

In this s tudy 342 810 VLBI observations from the geodetic programs PO- 
LARIS (the polar mot ion analysis), IRIS and the Crustal Dynamics Pro- 
g ramme (CDP) were analyzed. Fig. 6 shows the relativistic deflection in 
mas for the 26 sources that  are currently observed in the IRIS (Interna- 
tional Radio Interferometric Surveying) program. 
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Fig. 6. Light deflection angles in mas for the 26 sources that are currently observed 
in the IRIS program (from Robertson et al., 1991) 

Finally, I would like to ment ion that  the Shapiro effect plays a substantial  
role in any relativistic t iming model  for the analysis of t imes of arrivM from 
(binary) radio pulsars. 
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7 Einste inian dynamics  of  the  solar s y s t e m  

Numerical ephemerides (such as the DE-programs from JPL) for the solar 
system or the motion of the Moon with a certain number of •-parameters 
might be used together with certain data sets to get information about rel- 
ativistic effects in the motion of the solar system (such modern ephemerides 
usually comprise the relativistic equations of motion for point masses (the 
EIH equations) in addition to the Newtonian equations for extended bod- 
ies). Using such PPN-ephemerides with LLR and radar data to Mercury, 
Venus and Mars (VIKING) Ron Hellings (1983) obtained 

"y - 1 = ( -0 .7  4- 1.7) x 10 -3 

fl - 1 = ( -2 .9  + 3.1) x 10 -3 

j ~  = ( -1 .4  4-1.5) × 10 -8. 

The more recent anMysis by Miiller et al. (1991) using LLR data gave 

7 - 1 = ( - o . o s  4- 2 .0 [0 .46 ] )  × 10 - 3  

fl - 1 = ( - 0 . 2 1  4 - 1 . 5 1 0 . 2 4 ] )  x 10 - 3 .  

Measurements of the Nordtvedt effect (the strong equivalence principle) are 
discussed in Shapiro et al. (1976), Dickey et al. (1989) and Miiller et al. 
(1991); for a treatment of anomalous PPN-effects the reader is referred to 
Will (1981, 1984). Finally, the time variation of the gravitational constant G 
was determined with a variety of methods. Radar measurements to VIKING 
gave an upper limit of 3 × 10 -11 yr -1 by Reasenberg (1983), (0.2 4- 0.4) × 
10 -11 yr -1 by Hellings (1983); lunar laser ranging data lead to (M/iller et 
al. 1991) 

GIG = (0.01 -I- 1.04) x 10 -11 y r  -1.  

A more recent determination using data fl'om PSR 1913+16 by Damour et 
al. (1988) gave (1.0 + 2.3) x 10 - '1  yr -1. 

8 Further O U T L O O K  into the  future 

So far we have been deMing with measurements which have already been 
performed or are in preparation. In this chapter I would like to present 
some outlook into the future and ask about the prospects for highly precise 
improved measurements of general relativistic effects in the solar system. 
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8.1 Opt ica l  i n t e r f e r o m e t r y  in space  

To measure the gravitational light deflection in the field of the Sun with 
great precision future optical interferometry in space looks very promising. 
One envisaged experiment of that kind is POINTS, standing for "high Preci- 
sion Optical INTerferometer in Space", where one tries to achieve accuracies 
of the order of 5 × 10 -6" with a Michelson interferometer in orbit (Reasen- 
berg et al., 1982, 1989; Reasenberg and Chandler 1989). Such an accuracy 
can only be achieved with ultrastable and thermally controlled materials 
and a real time metrology of the apparatus with laser interferometry to 
10 -12 m. Expected light deflection angles at the limb of the Sun due to 
post-post-Newtonian effects, due to the quadrupole moment of the Sun and 
the angular momentum of the Sun a r e  ( A ~ P ) p p N  ~ 11 #as, (A~)j~ ,,~ 0.2 #as 

and (A~)T. o ,-~ 0.7/~as (Epstein and Shapiro 1980). These numbers imply, 
that  POINTS certainly will not be able to measure the J2 O effect and the 
gravito-magnetic light bending. Probably, the main goal will be a major 
improvement of the measurement of the space curvature parameter 7. 

8.2 I m p r o v e d  pe r ihe l i a  advance  m e a s u r e m e n t s  

There is some chance to improve the measurement of the perihelion advartce 
of Mercury. One possibility would be by means of a Mercury lander equipped 
with a radio transponder. There is some chance to improve the topography 
model for the surface of Mercury by observing same areas on Mercury from 
different orbital positions by means of the Arecibo or Goldstone anntennas. 
For more details see Shapiro (1990). 

8.3 I m p r o v e d  r edsh i f t  e x p e r i m e n t s  

New improved redshift experiments might be carried out in the future. An 
old idea is to send some atomic clock (H-maser) in a spacecraft very close to 
the Sun and to compare the readings of this clock with those of terrestrial 
clocks. Another possibilty is to compare very distant clocks, e.g. pulsar 
clocks, with terrestrial clocks and to analyse the annual deviation resulting 
from the eccentricity e of the Earth's orbit 

~_ -~GvfG-~aesinE ~_ 1.6 × 10 -a s i n e  (sec) (30) A r  

An ideal candidate for such an astronomical clock is the ms pulsar PSR 
1937+21, whose pulsar clock is stable to ,-- 10 -14 or better over a year or 
more! Fig. 7 shows a comparison between the pulsar clock PSR 1937+21 
and the best clocks of the world. Here, the proper motion problem of the 
pulsars could be solved with VLBI positioning. 
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Fig.  7. Post-fit arrival time residuals for PSR 1937+21 relative to UTC (NBS) 
(top) and to the BIPM "World's best clock" (bottom) (from Taylor 1989) 
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N e w  Results  for Relat ivist ic  Parameters  
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Abs t r ac t :  The theoretical model for the analysis of Lunar Laser Ranging (LLR) 
data is described and results of a least-squares fit are presented. Using obser- 
vations of more than 21 years we determined parameters concerning the Earth- 
Moon System (e.g. the mass of the system, the lunar tidal acceleration etc.), the 
station-reflector geometry (e.g. coordinates, Earth's orientation parameters etc.), 
and other physicM parameters like the solar quadrupole moment J~.  Besides 
these p&rameters others suitable for testing metric theories of gravity in the first 
post-Newtonian approximation can be determined with great accuracy. These are 
the PPN (parametrized post-Newtonian) parameters 7 and fl, the Nordtvedt pa- 
rameter r/, the geodetic precession 12Gp of the lunar orbit, as well as a possible 
time variation of the gravitational constant GIG. These relativistic parameters 
are discussed in detM1 including the derivation of realistic errors. 

1 I n t r o d u c t i o n  

During the Apollo 11 mission (July, 1969) the first retroreflector was de- 
ployed on the surface of the Moon. In the following years four other  re- 
flector arrays (two American: Apollo 14 and Apollo 15; and two French 
t ransported by unmanned Soviet landers: Luna 17 and Luna 21) were set 
up. Unfortunately measurements to one reflector (Luna 17) cannot be car- 
ried out, because it became dusty by the restart  of the unmanned lander. 

Since that  time continuing laser range measurements from the Ear th  
to the Moon axe performed. 'Measurements '  means recording the round- 
trip travel times of laser pulses from the laser station on the Ear th  to some 
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reflector on the Moon and back to the receiver. This value valid for a certain 
epoch is stored together with the actual weather data and some informations 
about possible measurement errors. The present-day accuracy of the LLI~ 
observations amounts to 0.1 nanoseconds corresponding to 3 centimeter in 
the Earth-Moon distance. 

The LLR observations which are averaged to normal points (consisting 
of 3 to 400 lunar returns)are taken from five sites: the 2.7 m telescope of the 
McDonald observatory; the McDonald Laser Ranging Station (MLRS, sit- 
uated in separate locations before and after a move in 1988); the Haleakala 
observatory on Maul, Hawaii; and the CERGA system in Grasse, France. 
At the moment Haleakala gets no financial support to continue Lunar Laser 
Ranging. At the McDonald station the lunar observation program is classi- 
fied to the lowest priority. Fortunately the Australian laser station Orroral 
and the German laser station Wettzell improved their equipment for Lunar 
Laser Ranging. Soon they will be able to range to the Moon (first successful 
observations in Wettzell exist) and to close the gap from the loss of the 
American stations. 

Today more than 7100 normal points obtained during the period from 
1969 to 1991 are available. For each epoch the observed travel time can 
be compared with the theoretically computed travel time. With suitable 
analysis methods one can determine a lot of parameters describing the dy- 
namics of the Earth-Moon system. Besides these parameters others suitable 
for testing metric theories of gravity in the first post-Newtonian approxi- 
mation can be determined. However, the basis for a promising analysis is a 
consistent theoretical model. 

2 M o d e l  

For about tell years our group has been active to develop the theoretical 
and practical prerequisites for the analysis of Lunar Laser Ranging mea- 
surements (Gleixner 1986; Schastok et al. 1989; Bauer 1989; Soffel 1989; 
Schneider 1989). In the last years efforts have been concentrated to revise 
and extend the model upon which the LLR data analysis is based and to 
determine relativistic parameters with high accuracy (Miiller 1991). 

Based upon Einstein's theory of gravity a fully consistent model for the 
LLR measuring process has been worked out at the first post-Newtonian 
level. This model employs essentially three coordinate systems: one global 
(barycentric) system in which the motion of the solar system is computed 
and the pulse propagation is described and two local, accelerated systems co- 
moving with the Earth and the Moon respectively. In the geocentric (seleno- 
centric) system the station (reflector) coordinates are defined. The relation 
between the global and the local coordinate systems can be obtained e.g. 
by means of the Brumberg-Kopejkin approach (Brumberg et al. 1988, 1989; 
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Kopejkin 1988). It allows to formulate equations for the coordinate transfor- 
mations between different reference frames, to derive relativistic equations of 
motion (including spin-orbit and spin-spin coupling terms) and to describe 
the observations in a consistent manner. 

The choice of this formalism has historical reasons. Equivalently the 
Damour-Soffel-Xu formalism (Da.mour et al. 1991) could be used to obtain 
all equations necessary for the LLR data analysis. 

In the Brumberg-Kopejkin scheme Einstein's field equations 

1 
R ~ - ~ g~'~ R = ~ T ~ (1) 

are solved in the harmonic gauge in the first post-Newtonian approximation. 
Using the perfect fluid approximation for the description of the matter  of 
the bodies and regarding the solar system as an isolated system the solution 
of Einstein's equations in the global system is obtained in the usual way. 

For the local metric one starts with an ansatz describing the gravita- 
tional influence of the central body itself (self-part) and of all the other 
bodies of the system (external part). For the external part one starts with 
an expansion in terms of powers of the local coordinate, such that  external 
bodies will only generate tidal effects in the local frame. The formalism is 
then completed by means of the asymptotic matching technique, i.e. in the 
region of common validity the global and the local metric can be transformed 
into each other by some suitable coordinate transformation and some condi- 
tion which relates the origin of the local system with the matter  distribution 
of the central body (e.g. with the center of mass of this body). 

The resulting equations are used in computer programs for the LLR data 
analysis. In detail we have programs for the 

1. computation of the ephemerides, 
2. computation of the partials of the lunar and solar orbital elements with 

respect to the solve-for parameters, 
3. computation of the partials of the Earth-Moon distance with respect to 

the solve-for parameters, calculation of the residuals and determination 
of the solve-for parameters (including the 1 a errors). 

3 T h e  E p h e m e r i s  P r o g r a m  

Starting with known initial conditions (position and velocity vectors as well 
as the masses of the bodies), in the ephemeris program the ephemerides of 
the solar system bodies are computed by numerical integration. The initial 
conditions are taken from the ephemeris DE200 which is produced by a 
combined analysis of different observation data at the Jet Propulsion Lab- 
oratory (JPL). DE200 is available for everyone. 
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Our ephemeris program for the major bodies of the solar system (Sun, 
planets, Moon, some asteroids) in harmonic baxycentric coordinates contains 
the following elements: 

with respect to the translational motion of bodies: 

* the Einstein-Infeld-Hoffmann (EIH) equations for point masses; 
• the classical Newtonian equations of motion for the description of 

the anisotropy of the bodies (the lowest mass multipole moments of 
Earth and Moon up to degree and order 4 are included; for the Sun 
a quadrupole moment is taken into account); 

• the lunar tidM acceleration; 

- with respect to the rotational motion of the Moon: 

• the Euler equations of rotational motion (torques axed produced by 
the Sun and the Earth including the influence of the quadrupole 
moment of the Earth); 

• a modification of these equations because of elastic behaviour and 
because of energy dissipation of the Moon; 

• the geodetic precession of the lunar spin; 

- with respect to the rotationM motion of the Eaxthl: 

• the 1980 IAU 2 nutation series for A¢ and Ae, supplemented by the 
two out-of-phase terms of the 18.6 year nutation period; the annual 
coefficients are corrected by a 2 mas (milliarcseconds) bias. The four 
coefficients of the 18.6 year nutation period can be estimated from 
LLR data by introducing well-known constraints for some ot these; 

• the precession angles of Lieske et al. (1977), but the luni-solax pre- 
cession constant is fitted to the observations; the geodetic precession 
of the geocentric system is already considered in these angles. 

• the Earth orientation parameters are taken from BIH/IERS3; they 
are used as approximate values and can be determined in the LLR 
analysis. 

The program for the computation of the partials is similiax to the 
ephemeris program; indeed, it is used in a simplified version. 

In the program for the determination of the solve-for parameters all 
elements which are necessary for a least-squaxes fit (residuals, information 
matrix etc.) axe computed, and finally the fit is performed. 

1 The angles describing the rotational motion of the Earth are not computed by 
integrating the corresponding Euler equations, but they are introduced from 
anMyticM models; they are especiMly needed for the coordinate transformations 
between barycentric and geocentric system. 

2 International Astronomical Union. 
Bureau InternationM de l'Heure/InternationM Earth Rotation Service. 
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Before the calculation of the residuals can be done, the station and 
reflector coordinates as well as the observed round-trip time have to be 
corrected by some systematic influences caused by the non-rigidity of the 
Earth, the definition of the local reference systems and the propagation of 
laser signals. 

4 Correc t ions  o f  the  Sta t ion  resp.  Re f l ec tor  
C o o r d i n a t e s  and the  Light Travel  T i m e  

Tidal effects of the solid Earth (which cannot be regarded as a rigid body) on 
the station coordinates are considered and effects for plate motion are taken 
into account using the AM0-2 model by Minster and Jordan (1978). The 
rates of plate motion for the Pacific, the North American and the Eurasian 
plate can be estimated. 

By means of the general coordinate transformation (e. g. Brumberg et 
al. 1988; Damour et al. 1991) geocentric station coordinates are related with 
corresponding barycentric quantities. A similiar transformation relates the 
selenocentric reflector coordinates with corresponding barycentric ones. In 
our program the transformation between the geocentric time TDT (terres- 
trial dynamical time) and the barycentric time TDB (barycentric dynamical 
time) is achieved by means of the Hirayama et ai. (1987) series. 

For the propagation of laser signals the light time equation containing 
the gravitational time delay (Shapiro effect) is employed. Here, both the 
influence of the Sun and the Earth are taken into account in the barycentric 
coordinate system. The model of Marini and Murray (1973) is introduced 
to correct for atmospheric influences. 

5 Modi f i ca t ions  of  the  M o d e l  

The EIH-equations are introduced in the form containing the metric para- 
meter 7 and fl (e.g. Will 1981). Corresponding to the PPN framework fur- 
ther parts of the LLR model have to be modified when parametrizing "7 
and fl, e.g. the light time equation or the equations for coordinate trans- 
formations. These changes also have to be done when affecting the model 
accuracy. Both metric parameters equal 1 in the generM theory of relativity. 

The gravitationM constant is allowed to vary with time by introducing 

a = a o  l+ xz t . (2) 

The linearization (2) is only valid for weakly gravitating bodies which is 
true for the solar system. G/G equals 0 in Einstein's theory of gravity and 
belongs to its basic assumptions. 
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In contrast to Einstein's theory some other metric theories of gravity 
(e.g. the Brans-Dicke theory) involve a violation of the strong equivalence 
principle (Will 1981). If, according to the difference in gravitational self- 
energy, Earth and Moon would fall towards the Sun at different rates the 
lunar orbit about the Earth would be polarized in the direction of the 
Sun. This effect, called Nordtvedt effect can be accurately investigated by 
analysing LLR data. The additional contribution to the Earth-Moon dis- 
tance being given by (Will 1981) 

ArEM ~- 9.2 r/ XES'XEM m .  (3) 
rES rEM 

Similiary another term was added for the determination of the geodetic 
precession of the lunar orbit. Following a method similiar to that of Shapiro 
et al. (1988), we introduced a solve-for parameter h by an additional accel- 
eration term of the form 

aGp = 2 h ~'~GP XVME (4) 

in the equations of translationai motion of the Moon. h indicates the devi- 
ation of the observed geodetic precession from the value predicted in Ein- 
stein's theory of gravity. 

6 Solve-for Parameters  

With such a model one can compute for a certain epoch the light travel 
time from some station to some laser reflector on the lunar surface and 
back to the receiver which can be compared with the observed value. For 
the results reported here we have performed a least-squares fit to 7100 LLR 
observations (normal points), spanning the period from 1969 to 1991. 

We estimated two groups of parameters. The splitting in two groups is 
done to achieve a faster convergency for the parameters of interest. The first 
group includes all so-called main parameters of the Earth-Moon system (a 
total number of about 880 parameters, the most are introduced to model the 
Earth's orientation), the second group consists of parameters, with which 
one can test Einstein's theory of gravity in the first post-Newtonian approx- 
imation. 

To the first group belong: 

• geocentric coordinates of the ground stations which define a terrestrial 
reference frame; 

• optional: rates of plate motion deviating from the predicted AM0-2 
values; 

• Earth's rotation (variations in the length of day); 
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• position of the rotational axis with respect to the solid Earth (polar 
motion on the Earth's surface); 

• the luni-solar precession constant and the four coefficients of the 18.6 
year nutation period; they describe the spatial shift of the rotational 
axis and indicate lacks in the analytical models for the description of 
the Earth's rotation in space introduced in the analysis; 

• selenocentric coordinates of four retroreflectors which define a reference 
frame on the Moon; 

• the rotation of the Moon for one initial epoch (physical libration angles); 
• position and velocity of the Moon for this epoch; 
• the mass of the Earth-Moon system times the gravitational constant G; 

the accurate knowledge of the lunar position and mass allows a more 
accurate determination of positions in the solar system; 

• the lowest mass multipole moments of the Moon up to degree and or- 
der 3, i.e. the gravitational field of the Moon which deviates from a 
spherical mass distribution; 

• the lunar Love number; it models the static perturbation of a homoge- 
neous elastic sphere; 

• the rotational energy dissipation parameter describing a delay time for 
the Moon to react upon gravitational perturbations; 
These two parameters give informations about the inner composition 
of the Moon; 

• the lag angle indicating the lunar tidal acceleration nM resulting from 
the tidal bulge raised on the Earth. 

To the second group belong: 

• the quadrupole moment of the Sun J~  (indicating the static flattening 
and the shape of the Sun); 

• the space curvature parameter 7 entering the light time equation and 
the equations of translational motion as well as the formulae of coordi- 
nate transformations; 

• the non-linearity parameter fl involved in the equations of motion and 
the formulae for coordinate transformations; 

• the Nordtvedt parameter 71 (strong equivalence principle); 
• the scale factor h for an additional (deviating from Einstein's theory) 

geodetic precession ~'~GP of the lunar orbit; 
• the time variation of the gravitational constant G/G; this parameter 

is important  e.g. for the unification of the fundamental forces (gravita- 
tional, electromagnetic, weak and strong nuclear) or in cosmology for 
the description of the evolving universe. 
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7 Invest igat ion of Real ist ic  Errors 

Results for the second group of parameters will be presented below. Once the 
main parameters  from the first group have been est imated values for the six 
parameters  of the second group are derived by means of a least-squares fit to 
weighted observations. Besides the new values for the solve-for parameters  
the fit gives formM 1 a errors (indicated below in square brackets) and the 
correlation matrix. Derived correlations for our six parameter  of interest are 
given in Table 1. 

Table  1. Derived correlations for our six Parameters of interest 

J~ "y Z ,7 ~ o p ~ / a  

J ~  * 2 3 1 5 5 
7 2 * 7 2 3 4 
fl 3 7 * 2 3 5 
r] 1 2 2 * 1 1 
~"~ G P  5 3 3 1 * 2 
GIG 5 4 5 1 2 * 

The various integers indicate the correlations between the six parameters  of 
the second group; 0: correlation ~ 5%; 1: 5% -15%; . . . ;  9: 85% -95%; *: >_ 
95%. 

In most cases realistic errors will be much greater than formal ones. We 
have est imated the various realistic errors given below by a combination 
of techniques: we have analysed the various correlations of parameters  and 
est imated the influence of insufficient modelling and inaccurate model pa- 
rameters. Main error sources for most parameters involve inaccurate Earth 's  
orientation parameters (especially those of the early years) and nutat ion co- 
efficients. For some parameters the insufficient modelling of plate tectonics 
or unmodelled perturbations caused by asteroids play a role. Further  error 
sources are e.g. the lunar tidM acceleration, the inaccurate solar mass or the 
orbital elements of the Earth which might not sufficiently accurate be deter- 
mined. Table 2 shows various error sources for our six parameters.  Column 
2 gives estimated errors resulting from weakly known Earth 's  orientation 
parameters.  Column 3 shows errors resulting from inaccurate nutat ion co- 
efficients. In column 4 differences to the estimated values are listed if one 
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neglects the asteroids in the ephemeris program. Finally, in column 5 cor- 
responding differences are given for the two cases i) the AM0-2 model is 
used for the description of plate motion and ii) the rates of plate motion 
are estimated from LLR data. 

Table 2. Various erros sources for our six parameters 

Parameter  AEOP ANut.  AAster. AP1. Mo. 

7 

7/ 

12Op [as/cy] 
GIG [yr -1] 

1.2 x 10 -6 
0.6 x 10 -3 
0.1 × 10 -3 
0.5 x 10 -3 

0.003 
5.5 x 10 -13 

0.5 x 10 -6 
1.8 x 10 -3 
0.8 x 10 -3 
0.05 x 10 -3 
0.001 
0.9 x 10 -13 

0.4 × 10 -6 
0.1 x 10 -3 
0.1 x 10 -3 
0.01 x 10 -3 

0.003 
2.6 x 10 -13 

0.2 × 10 -6 
0.2 x 10 -3 
0.1 × 10 -3 
0.02 x 10 -3 
0.0002 
0.3 x 10 -13 

as/cy = arcseconds/century 

The estimation of realistic errors finally has been checked by means of a 
"modified worst case analysis" (Bender 1990), where the total error of the 
observations is partly transfered to the solve-for parameters. 

8 R e s u l t s  

We obtained for 

* the quadrupole moment of the Sun: 

= (2.0+ 1.510.5]) × i0 

where the estimated realistic error is given and the value in square brackets 
indicates the formal 1 ~r error. 

We would like to remark that  our value for J ~  has the same order as 
that  derived from an analysis of the global five-minute oscillations of the 
Sun (Hill et al. 1982; Gough 1982; Campbell et al. 1983). A more recent 
investigation of the solar oscillations, however, seems to indicate that  the 
value of J2 O might, in fact, be smaller and of the order of 2 × 10 -7 (Brown 
et al. 1989). 
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J~  obtained by analysing LLR data is slightly affected by some (hitherto 
unknown) systematic influences which can be reduced by using observations 
over a longer period of time. One error source which is still not considered 
in the above error value is a possible insufficient knowledge of the Earth 's  
orbit. Would be found that the orbital elements taken from an analysis of 
different measurements (especially radar observations) would inaccurately 
be determined and had to be estimated from the LLR data the formal error 
of the solar quadrupole moment would increase to 3.1 x 10 -6. That  would 
mean J2 ° could not significantly be determined from LLR observations. 
However, it would be possible to indicate an upper limit of the order of 
6 x 10 -6 for J~.  At the moment we investigate that issue to abolish the 
uncertainties. 

The value for the quadrupole moment of the Sun enters the expression 
for the anomalous advance of a planet. In the PPN framework the change 
of w per revolution is given by 

• GMo A (5) 
wth~o = 6 ~ a (1  - e 2 )  d 

with 
A- 2 + 2 V - f l +  R~c ~ 

3 2 G M o a ( 1 - e  2) J~" (6) 

For fl = V = 1 (Einstein case) we find for Mercury 

&theo = 42.98 (1 + 3 x 10 .3 J~)  as/cy 

= 43.24 -t- 0.2 as/cy.  

This has to be compared with the observed value of 

Dobs = 43.11 4- 0.21 as/cy 

resulting from planetary radar measurements (Shapiro et al. 1976). The 
observed and the theoretical value are in good agreement within the given 
errors. 

Besides the correlations of J~  with the other five parameters given in 
Table 1 this value is highly correlated with the station coordinates and 
slightly with the lunar tidal acceleration and the A¢-coefficients of the 
18.6 year nutation period, which has to be taken into account in the error 
analysis. 

• the space curvature parameter 7: 

V -  1 = ( - 0 . 1  + 2 . 0 [ 0 . 4 ] )  × 10 -3  . 

Other measurements of 7 - 1  gave: (0.4- 2.0) x 10 -3 (Reasenberg et al. 1979), 
( - 0 . 7  4- 1.7) x 10 -3 (Hellings 1983) and (0.2 4- 2.0) x 10 -3 (Robertson et 
al. 1991). 
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• the non-linearity parameter  t :  

- 1 = ( -  0 . 2  4 - 1 . 5  [0.2])  x 10 - 3  . 

Hcllings (1983) obtained f l -1  = ( -  2.9 4- 3.1)x 10 -a. fl is strongly correlated 
with 7 and slightly, with the orbital parameters of the Moon, the lunar tidal 
acceleration and G/G. 

The error of both metric parameter  7 and fl increases when estimating 
the orbital elements of the Ear th  simultaneously and would be obtained to 
4 × 10 -3 for 7 and 3 × 10 -3 for ft. 

• the Nordtvedt parameter  7/: 

= 0.0001 4- 0.0015 [0 .0006] ,  

corresponding to a variation of the Earth-Moon distance of one millime- 
ter with an error of 15 millimeter. Other measurements of 7/gave 0.001 4- 
0.015 [0.004] by Shapiro et al. (1976) where the value in square brackets 
indicates again the formal 1 ~r error; Dickey et al. (1989) obtained a value 
of 0.003 with an estimated total error of 0.004. The Nordtvedt parameter  is 
strongly correlated with the mass of the Earth-Moon system (about 70 %) 
and the X- and Y:components of the lunar orbit. 

• the scale factor for an additional geodetic precession ~'~GP of the lunar 
orbit (h = 0 in Einstein's theory): 

h = 0.002 + 0.010 [0.002]. 

This value for h means that  the rate of geodetic precession predicted in 
Einstein's theory of gravity (~  2 as/cy) is confirmed with an error of 0.002 
as/cy. In comparison Shapiro et al. (1988) obtained h = 0.00 4- 0.02. 

Besides the correlation given in Table 1 f l a p  is weakly correlated with 
the station coordinates. 

• the t ime variation of the gravitational constant: 

= ( 0 . 0 0 3  4- 1 . 0 4 1 0 . 0 0 4 ] )  X 10 -11  y r  - 1  . 

Here the realistic error is essentially determined by that of the lunar tidal 
acceleration/~U. The error estimation for nM is a subtle issue that  will be 
discussed elsewhere; here we have used a rather  conservative (large) value 
for the error of/ZM (0.9 as /cy 2) and assumed a correlation of about 100% 
between both parameters to derive the above realistic error for GIG. 

Other determinations for GIG based upon radar  measurements  to 
VIKING gave an upper limit of 3 x 10 -11 yr -1 by Reasenberg (1983) resp. 
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(0.2 :t= 0.4) × 10 -11 yr -1 by Hellings et al. (1983); a more recent determi- 
nation using data from the binary pulsar PSR 1913+16 by Damour et al. 
(1988) gave (1.0 -t- 2.3) × 10 -11 yr -1. 

9 C o n c l u s i o n  

We have shown some theoretical and practical aspects of the LLR data 
analysis and gave some insights into the estimation of realistic errors. 

In conclusion, LLR data analysis provides an excellent method for de- 
terming parameters of the Earth-Moon system, including Earth 's  orienta- 
tion parameters. After having obtained a good set of starting values, param- 
eters related with metric theories of gravity can be determined with great 
accuracy. Our parameter fit to about 7100 LLR observations does not indi- 
cate any violation of Einstein's theory of gravity in the first post-Newtonian 
approximation, rather confirms the general theory of relativity impressively. 

At the moment we investigate the possibility to determine further rela- 
tivistic parameters from the LLR data; effects of interest are e.g. the Lorentz 
contraction or the proportionality of inertial and gravitational mass. 

Support from the Deutsche Forschungsgemeinschaft is gratefully ac- 
knowledged. 
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A b s t r a c t :  V e r y - L o n g - B a s e l i n e  I n t e r f e r o m e t r y  ( V L B I )  is r ou t i ne ly  used at  d m / c m -  
w a v e l e n g t h s  on base l ines  r a n g i n g  up to ~ 10000 km.  G l o b a l  V L B I  n e t w o r k s  of large radio 
te lescopes  e q u i p p e d  wi th  low noise receivers ,  a t o m i c  clocks driving independent loca l  os- 
c i l la tors ,  and  b r o a d - b a n d  recorders  ( d a t a  r a t e s  ~ 1 0 0 M b i t / s )  allow the  m e a s u r e m e n t  of 
cohe rence  f u n c t i o n s  of radio  wave fields wi th  h igh s ens i t i v i t y  ( d e t e c t i o n  l imi t s  ~ 10 -2s  

W / ( H Z  rn2))  and  d i f ferenced g roup  de lays  of rad io  s ignals  .wi th  h igh  accu racy  (errors 
~< 5 × 10 -11 s). We d iscuss  basic pr inc ip les ,  c u r r e n t  l imi t s ,  and  i m p o r t a n t  d e v e l o p m e n t s  

of the  m e t h o d  in view of i ts use in  as t ro- ,  geo-, and  g r a v i t a t i o n a l  phys ics .  

1 Introduction and Summary 

In this lecture we will discuss some important aspects of VLBI (Very-Long-Baseline 
Interferometry) and its use in astro-, geo-, and gravitational physics. This intro- 
ductory chapter summarizes the characteristic features of VLBI. We will then 
discuss some basic concepts of radio interferometry (Chap. 2), the VLBI signal 
path (Chap. 3), high-precision interferometry based on the group delay observ- 
able (Chap. 4), and finally important areas of scientific application, major current 
activities and developments (Chap. 5). 

For more thorough study we refer to the following 
- monographs on radio interferometry: Thompson, Moran, Swenson (1986); 

(ed.) Ueeks (1976); Wohlleben, Mattes, Krichbaum (1991), on relativity in 
astrometry and geodesy: Soffel (1989); 

- lecture notes on synthesis imaging (eds.): Perley, Schwab, Bridle (1989), on 
VLBI: Felli and Spencer (1989); 

- conference proceedings on radio interferometry (eels.): Cornwell and Perley 
(1991), on the impact of VLBI on astro- and geophysics: Reid and Moran 
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(1988), on parsec-scale radio jets: Zensus and Pearson (1989), on geodetic 
VLBI: Carter (1991), on space- and mm-VLBI: Hirabayashi, Inoue, Kobayashi 
(1992). 

1.1 V L B I :  a S u m m a r y  

All types of radiointerferometer currently used in radioastronomy and geodesy 
work according to the same principles. They measure primarily the complex 
coherence function I'12 o¢ (vl v~) between two space-time points 1,2 of a radio- 
wavefield by cross correlating the fluctuating antenna signals vl,  v2 sampled prior 
to quadratic detection; i.e. the quantities being correlated are voltages and not 
intensities. This is an essential prerequisite for achieving the required sensitivity, 
measuring accuracy, and imaging capability. For an incoherent and stationary ra- 
dio source/'12 = / ~ ( d . / S ,  r) depends only on the projected antenna spacing d ~ / S  
(perpendicular to the line of sight) measured in wavelengths and on the time dif- 
ference r of the two antenna signals with respect to an incoming plane wave front 
(parallel to d .  ). The potential of interferometry as a high precis ion/high angu- 
lar resolution method is due to the fact that  for non-monochromatic, incoherent 
sources (bandwidth B, diameter T) /" is zero everywhere (due to destructive in- 
terference) except for a small range of values of r and T fulfilling the temporal 
and spatial 'coherence conditions' respectively: r < 1/B and T < S/d±.  For a 
continuum source/1 has a sharp maximum around r = 0 depending on B. This 
allows an accurate measurement of the VLBI delay rg, i.e. the difference in arrival 
t ime of a radio wave group at two antennae. The quantity rg is the most important  
VLBI observable for measuring angular positions of radio sources, vector spacings 
of antennae, Ear th  rotation parameters, and any other quantity affecting the path  
of the radio signal directly or indirectly. 

The ratio S / d .  determines the scale of angular resolution, a n d / ' ( d . / ) ~ ,  ~" ~ 0) 
is proportional to the Fourier transform of the intensity distribution (image) of the 
radio source. The image can be restored i f / '  is measured at a sufficient number  of 
points in the d ± / S  -plane or 'aperture plane'. Adequate sampling of the aperture 
plane is achieved with an array of, say, 10 radio telescopes, by taking advantage 
of the Earth rotation which changes the length and aspect angle of the projected 
baselines as the observing goes on. 

From a technical point of view, one basically distinguishes two types of instru- 
ment: a) the short-baseline (~  150kin) 'connected-element interferometers', and 
b) the VLB intefferometers (baselines up to ~,, 10000 kin) which have no real-time 
coherent finks between the receiving elements. In VLBI the signals received at 
each intefferometer element are recorded digitally during the observing run and 
correlated at a later t ime at a central processing facility. Specific technical require- 
ments for this kind of operation are fast signal recorders, compact storage media, 
multi-station correlators, and high precision frequency standards (atomic clocks) 
which control the independent local oscillators and the signal recording at each 
station. For sensitivity reasons low noise microwave receivers and large antennae 
as interferometer elements are required. 
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The first succesful VLBI experiments were carried out in Canada at 75 cm and 
in the USA at 50 cm wavelength in 1967. Since then VLBI has developed rapidly. 
The sceptics who predicted that VLBI would never be able to produce proper im- 
ages and measure intercontinental distances with cm-accuracy were refuted by the 
progress of the last two decades. Even now the potential of VLBI is far from being 
exhausted. Subcm-accuracy, for exarnple, is now the declared goal of geophysical 
VLBI. 

The scientific motivation and justification for the development of VLBI have 
come from astrophysics (quasars, active galactic nuclei (AGNs), interstellar masers 
(H20, OH), stars), geophysics (vaxiation of Earth rotation parameters, crustal 
motion, tides of the sond Earth), and gravitational physics (light deflection). 

VLBI networks of continental and global diameters, routinely operated at 
dm/cm wavelengths, are effectively the largest telescopes which have ever looked 
into the depths of the universe. Images can be obtained with an angular resolution 
of ~ 0'.'0002 (see Fig. 13), still unrivalled in any other branch of astronomy. VLBI 
observations have produced many important discoveries including the common oc- 
currence of collimated outflow (beams, jets) from AGNs on the gpc scale often 
extending up to g l  Mpc from the origin, and the structural variability of compact 
radio sources many of which show component separating with apparent speeds ~c 
(superlum~nal motion). 

VLBI is the only method for measuring intercontinental distances directly, i.e. 
independently of a model for the Earth's gravitational field, with cm accuracy. 
VLBI has made possible for the first time the direct measurement of the rela- 
tive motion of tectonic plates predicted by Wegener's continental drift hypothesis 
(GSttingen 1912). 

VLBI has become the method with the highest precision and the highest time 
resolution for monitoring the Earth's rotation parameters (polar motion, UT.1 vari- 
ations). The current IERS (International Earth Rotation Service, Paris, formerly 
BII-I) Earth rotation bulletin is based primarily on VLBI measurements. 

The accuracy level of geophysical VLBI observing campaigns routinely requires 
taking into account the effect of gravitational light deflection by the sun for all 
observations. This in turn has allowed the determination of the parameter "TPPN of 
the Parametrized Post-Newtonian formulation of gravitation theories, as 1 ± 0.002. 

VLBI is international for obvious reasons and interdisciplinary by its very na- 
ture. 

Some important ongoing developments are: 
- the build up of dedicated VLBI arrays of _~ 10 stations with multi-frequency 

observing capability for astronomical radio sources (most notably the Very- 
Long-Baseline Array (VLBA), New Mexico, USA), 

- the organisation of long term programs for monitoring geodynamlcal effects 
(IRIS project and NASA's Crustal Dynamics Program) with the declared goal 
of advancing into the sub-era accuracy regime, 

- the development of mm-VLBI, presently at 43, 100m and 230 GHz, 
- the plo.nning and preparation for space VLBI: projects Radioastron (Interkos- 

mos, Russia, CIS) and VSOP (ISAS, Japan). The idea is to operate ground- 
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based VLBI networks in conjunction with space borne antennae. Such space 
systems, by utilizing both Earth rotation and the orbital motion of the satellite 
antennae, will effectively create telescopes of diameter ~ 25000 kin. 

- the development of advanced VLBI systems (recording, playback, and correla- 
tion equipment) based on high-density recording techniques. Recording rates 
of up to 2 Gbit/s have already been demonstrated to be possible. 

The main reasons which have enabled radio interferometry to advance so swiftly 
toward higher and higher resolution are 

a) tlie favorable properties of the atmosphere at dm/cmwavelengths: radio 
imaging is diffraction limited even at resolutions ~ 0':0001 at these wavelengths. 

b) the possibility of coherent reception in the radio regime. The frequencies of 
the signals received are 'downconverted' by mixing with a oscillator signal. This 
feature, referred to as 'heterodyne frequency conversion', is crucial in making radio 
interferometry such a powerful method. It enables the major part of the signal 
processing to be performed at intermediate frequencies that are most appropriate 
for amplification, transmission, filtering, recording, and other processes. 
For a summary of technical characteristics of VLBI, see also Tab. 1. 

Fig .  1. About  55 major  VLBI stations expected to be operational by tile mid 1990's. 
The radio telescopes are located in Australia (7), Brazil, Canada,  China (3), CIS (former 
USSR) (11), England (2), France, Germany (2), Italy (4), India, Japan (2), The Nether- 
lands, Poland, South Africa, Spain (2), Sweden, USA (13), and (not shown here) the 
German station O't t iggins in Antarct ica 
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2 B a s i c  C o n c e p t s :  T e m p o r a l  a n d  S p a t i a l  C o h e r e n c e  

In order to understand the high precision, the high angular resolution, and the 
imaging capability of VLBI measurements it is necessary to consider the interfer- 
ence process taking place in an interferometer. We make the following assumptions: 

a) the radio source of diameter ~o is spatially incoherent, 
b) the wave field is stationary, 
c) the signal is quasi-monochromatic, i.e. spectral bandwidth B << observing 

frequency u, 
d) the wave field can be described by plane waves. 

These assumptions are necessary to make the problem tractable; they hold in 
almost all practical cases. For the sake of simplicity we assume here: 

e) polarisation match, i.e. we neglect the vector character of the wave field, 
f) 'white noise', i.e. negligible r-dependence of the spectral flux density within B, 

which is normally the case for continuum sources in contrast to line sources, 
g) absence of the atmosphere and a noiseless and perfectly coherent interfer- 

ometer. Both assumptions are never fulfilled in reality but are helpful for 
understanding the principle. 

As all interferometric arrays are, from an operational point of view, an ensemble 
of two-element-interferometers, it is sufficient in the following to consider a ' twin 
interferometer'. This measures the mutual  coherence function /'12 between two 
space-time points 1,2. Assumptions (a) and (b) imply t h a t / "  depends only on the 
'spatial frequency' d . / A  (see Fig. 3) and delay r of a (wave group) signal with 
respect to the reference- or aperture plane (spanned by d . / A )  : 

r(ai/ , = r12 = {vlv;)t( c) (1) 

where V1, V2 axe complex amplitudes (Mandel and Wolf 1965) associated with the 
fluctuating field strengths of the radio wave field and which are measured by the 
induced antenna voltages; the brackets denote a time average over an accumulation 
time t(acc) ~ 2s. 

Assumption (c) factorizes the temporal and spatial interference effects so that  
we can consider them as decoupled in a first approximation. 

It is now important  to note t h a t / '  is only measurably non-zero under fairly re- 
strictive 'coherence conditions'. This is because for given instrumental parameters 
B and d i / A  the superposition of spectral components with r > B- 1 and/or  the 
superposition of directional components from a cone angle ~o > k/d± leads to de- 
structive interference. The temporal (longitudinal) and spatial (lateral) coherence 
conditions axe therefore 

r < l / B  and ~o<A/d j_ .  (2) 

1/B determines the order of the spectral coherence time and A/dj. the scale 
of angular resolution. A source with ~ << ) t /d i  is called a 'point source'. 
~o ~ ~/d± (max) means the source is 'resolved'. 
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The temporal coherence condition means in practice that only signals from 
incoming plane wave fronts should be crosscorrelated. This again means that the 
data streams coming from two antennae must be shifted before the correlation 
by the difference in arrival time rg of a plane wave front at two interferometer 
elements. The 'VLBI delay' ~'g is dominated by the light travel time corresponding 
to the longitudinal baseline component d • s (Fig. 3). ~-g has therefore to be known 
a priori for each moment of the observation with an accuracy _K l /B,  so that 
it can be continuously compensated before the correlation ('delay tracking') and 
the correlation is always performed near the interference maximum (r  = 0). The 
sharpness of this maximum on the other hand enables rg to be determined with 
higher accuracy, a posteriori. This is the basis for high precision interferometry 
and its use in astro-, geo-, and gravitational physics. 

To see this more quantitatively consider the normalized 'delay characteristic' 
L 
F(r)  which describes the interferometer response as a function of r for a sufficiently 
strong and compact continuum source. The superposition of harmonic components 
in the downconverted observing band (=  'base band' 0MHz -*B), lead after 
crosscorrelation with delay r ,  to the following expression for F(r): 

• f./2 [~/2 
= F(,,, ') - ' 2 : ' ' ,  d,,,' / V(,,,') d,,,' (3) 

J-B/2 ~"-B/2 

= e_i,8~ s in ( rBr )  
• IrB~- for rectangular bandpasses (4) 

where F(r, ') is the product of the ban@asses (frequency filter characteristic), here 
assumed to be identical; the origin of u' is taken to be at the midpoint of the base 
band, i.e. the center frequency B/2. The half width of the central peak of the sinc 
function around r = 0 is proportional to B- 1 and so is the accuracy with which the 
position of the peak can be determined. Here continuous coverage of the frequency 
band was assumed. This condition can be relaxed, that is, the bandwidth may be 
spread without the need to continuously cover the range between the minimum and 
maximum frequency. In this way the measuring accuracy of rg is further increased 
(Rogers 1970): 

6rmsrg ~ (2~r(Umax-Umi,) 'SNR) -1 , (5) 

where 6rms means 'rms error', SNR Signal-to-Noise ratio, and Bs = (t'max - t 'n~) 
is the 'spanned bandwidth'. 

rg is in practice the most important VLBI observable for astrometric and 
geodetic applications, i.e. for measuring source positions or directional vectors 
(s; Is[ = 1), baseline vectors (d), variations of the Earth rotation vector ( h e ) ,  
and all other quantities which influence rg. The vectors s, d, and ~ • are related 
by (6) and (7): 

d 
rg . . . .  s + smaller terms (6) 

¢ 

d . (S2e x s) + smaller terms = = X  

7.3 kHz. (d~ (E-W)/1000 km)](~,/cm) • cos 6 (Tb) 
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The 'fringe frequency' vf or the 'delay rate' "/'g describe the relative phase drift 
2~rvft between signals V1 and V2 induced b y  the differential Doppler effect due to 
the Earth rotation. "E-W" indicates the East-West component of the projected 
baseline; 6 is the source declination. 

Consider spatial coherence. What is the relation be tween/ '  and the brightness 
distribution or 'image' I(~r) of an extended radio source with ,, _-- s - so (Fig. 3) 
denoting the relative position of a picture element? This can easily be seen thanks 
to assumptions (a) and (d). 

In the Case of an extended radio source the signal received at each interferome- 
ter element is a superposition f d~V(a  ) of contributions from all source elements, 
and 

= = <jj ( s )  /'12 

Incoherence of the radio source means that  the time average of all cross products 
of contributions from different source elements disappear so that / '12 is reduced to 

/'12 = (Vi(o')V~(~r)) do, (9) 

The signals Vl(o') and V2(o') of a plane harmonic wave (assumption d) passing 
through the aperture plane (r  = 0) at a small angle ~r to the reference direction 
are identical except for a phase difference 2~r(d±/),),7 (Fig. 3): 

v2(~ ) = v l ( ~  ) .  e i~" (d~ / ~).~ (10) 

Inserting (10) into  (9) and taking into account that I(,T) = (Vl(,~)V[(,~)), yields 
immediately the Fourier relation between I a n d / ' ,  the so-called van Cittert-Zemike 
theorem 

= o) = f I( .) .  a .  (11) 

Spatial frequency and relative angular position are usually expressed by their rect- 
= ~ l a r  E / W  and N/S components: ( u , v ) =  ( d i / ~ )  and (~,q) = ~. By setting 
Ae'* - / ' ( u , v , r  = 0) [A,~ real] we can rewrite (11): 

ei# (u,v) = f/I({, r/). e- i2, (ug+V~)d~dT/ A(u, V)" (12) 

A is called 'fringe amplitude' or 'correlated flux density' S(corr) typically cal- 
ibrated in units of Jy (Jansky) = 10-26Wm-2Hz - 1. The normalized quantity 
S(corr)/S(total) is called 'visibility' (meaning 'fringe visibility'). 

Relation (12) is the basis for interferometric imaging. Proper image restora- 
tion requires A and • to be measured at a sufficient number of points (u,v) in 
the Fourier- or 'aperture'  plane. This is achieved with an azray of ~ 10 antennae 
observing the radio source for several (£  12) hours. During this time the Earth 
rotation generates for each binary combination in the array a sequence of different 
points in the (u,v) plane ("Earth rotation synthesis"). In astronomical interfer- 
ometry the actual degree of (u,v) plane coverage varies considerably. The extreme 
cases axe, at one end minimal knowledge o f / ' ( u ,  v), namely at one or a few (u,v) 
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points only, and at the other end maximal knowledge, i.e. F is completely sam- 
pled over an aperture of radius d± (max)/), on a grid of ceil size A/(2d± (max)). 
In the latter case, which is only achievable in local interferometry, perfect imaging 
is possible by straightforward Fourier inversion. In intermediate (typical VLBI) 
cases image restoration requires iterative methods; and the achievable dynamic 
range depends strongly on the actual coverage O f the (u,v) plane and the amomlt 
of retrievable phase (#) information (Sect. 3.5). 

.? / -----_<. 
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F i g .  2.  S c h e m a t i c  d i a g r a m  of the  expe r -  
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delay,  the d o m i n a n t  p a r t  of the  g r o u p  de- 

lay 

3 A l o n g  the  V L B I  Signal  P a t h  

3.1 VLBI Specifics 

The defining property of VLBI is the lack of coherent links between the interfer- 
olneter elements and the correlator, i.e. the 'focus' of a VLBI network or 'alTay' 
(Fig. 2). The reason for this is the prohibitive cost of such links over long distances. 
As a consequence, the measuring process is decomposed into four main steps to 
be briefly described in the following: 

1) signal reception and digital recording at N stations, 
2) the correlation of the signals for all N(N-1)/2 baselines, 
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3) the signal analysis yielding the observables proper and calibration of the 'raw' 
fringe amplitude, 

4a) in astronomy: the restoration of the radio source image and/or  
4b) in geodetic/astrometric VLBI: the determination of source positions, baseline 

vectors, Earth rotation parameters and other quantities which can measurably 
affect the differential light paths. 

The main constituents of the interferometric setup [important parameters or 
effects in brackets] are (Fig. 2, Fig. 3): 

• the radio source [ ' image'  I(~,~/), angular position]; 
• the Earth's atmosphere [fluctuation of path length and attenuation]; 
• the interferometer elements comprising: antennae [diameter D, baseline vec- 

tors d], receiving systems [observing wavelength A, noise temperature Tsys], 
independent frequency standards [stability 6u/u], signal recorders [sampling 
rate or bandwidth B]; 

• the central VLBI processor incorporating control computer, playback system, 
and correlator [number of stations which can be correlated simultaneously at 
a given bandwidth]; 

• the Earth [rotation vector ~ ~, fringe frequency uf] 

The 'VLBI system' (recording and correlation equipment) most widely used 
at the moment is the Mark III-System developed at Haystack Observatory, Ma., 
USA (Rogers et al. 1983). It has a maximal contiguous bandwidth of l l2MHz.  I t  
will be succeeded by the next generation Mark IV system in the near future. 

The following limitations are typical for VLBI: 
a) The interferometer coherence time tcoh ~ 10 rain is much shorter than a full ob- 
serving run (,,, 12 h) due to the limited - albeit high - stability of the independent 
frequency standards (~  10-14) and by the atmosphere. As teoh is the upper limit 
to the coherent integration time tint, this limits the sensitivity of the interferome- 
ter. 
b) It also leads to the loss of phase of the complex coherence function. Fortu- 
nately this visibility phase can be recovered later to some extent depending on the 
amount of measured data. 
c) The nonoptimal geographical distribution and/or  an insufficient number of 
VLBI stations result in an incomplete coverage of the Fourier or (u,v) plane. Both 
limitations (b) and (c) pose problems to image restoration. 

The point source detection limit of a two-element interferometer is given by 
~7  times the rms noise, a(Scorr), of the correlated flux density 

7 5 0 0 .  y / T s y s  I [K l - Tsys ,2 [K l 
l * ( S c o = )  ' _ _  J y  , ( 13 )  

v / B [ H z l  • t in t [ s ] .  D l [ m ]  • D 2 [ m ]  • • */2 

with tint coherent integration time and r/ aperture efficiency, defined as ratio of 
the effective to the geometric antenna collecting area, typically about 0.5. 
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3.2 Signal Reception and Recording 

Figure 4 shows the main processes taking place at the site of each interferometer 
element: these are 

- signal reception with primary amplification in a low noise amplifier and fre- 
quency down-conversion from the radio band in the GHz regime to the 'video' 
regime 0 MHz ~_ y _~ B. Low-noise receivers typically used are maser ampli- 
tiers, FETs (field- effect transistors), and increasingly HEMTs (high electron 
mobility transistors) 

- sampling with 1 bit per sample (Mk III system). The sampling rate has to be 
twice the bandwidth; 

- recording of the signal on magnetic tape for later processing at the correlator. 
The data on tape are 1-bit samples of the fluctuating antenna voltage (not 
intensity!); they are typically dominated by uncorrelated noise from the re- 
ceiver, the atmosphere, extended radio emission and other sources so that the 
primary signal, i.e. the uncalibrated correlation coefficient is typically only of 
the order of 10-3 to 10-5. 

The whole process is under control of a highly stable atomic frequency standard 
(6v/v ~ 10-14 over 1 to 105 s). It controls the local oscillator and functions as 
clock, implicitly by controlling the sampling, and explicitly by marking the data 
with UTC 1 200 times per second. The most demanding task of the atomic clock 
is not the time keeping (tie to UTC) but rather to guarantee the extreme phase 
stability needed for coherent integration over ~ several hundred seconds and the 
instrumental group delay stability over ~24 h. Harmonic signals received at two 
stations have to keep 'in step' for at least about one minute for constructive in- 
terference ("fringes") to be measurable, and preferably for much longer. Hydrogen 
masers axe at the moment the atomic clocks best suited for VLBI owing to their 
high stability on both short and long time scales from one to several 104 seconds. 
The time synchronisation of the various station clocks has to be on the order of 
microseconds which can easily be achieved. 

3.3 Cross-Correlation 

Fig. 4 shows the main functions of the VLBI processor. The 'a priori information' 
comprises all data which determine the spaze/time structure of the intefferometric 
setup at each moment of the observation such as source positions, station coordi- 
nates, UT12-UTC,  clock and local oscillator offsets etc.. These data enable the 
control computer to calculate during the correlation run (which in a way is a re- 
production of the observing run) the running values of the expected delay rg exp and 
expected fringe frequency v~ xp for all baselines. As we have seen before there is 
no use in just correlating signals which have arrived at the same UTC at different 
stations. To meet the temporal coherence condition the signals from two stations 

I U T C  ( U n i v e r s a l  T i m e  C o o r d i n a t e d )  ---- T A I  ( T e m p s  A t o m i q u e  I n t e r n a t i o n a l )  + leap 
second  

2 U T 1  ----- observed  mean  s o l a r  t i m e  c o r r e c t e d  fo r  p o l a r  m o t i o n  
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have to be synchronised w.r.t, an incoming plane wave front (1[ d .  ; r  = 0). This 
is done by the 'delay tracker' with submicrosecond accuracy in order to be always 
close to the interference maximum ( width ~ 1/B on the r-axis). 

The 'fringe rotator' is supposed to remove the differential Doppler effect due 
to the Earth rotation. Due to the uncertainty in the a priori knowledge of the 
interferometer geometry, this means in practice that the 'natural fringe frequency' 
uf [10 kHz scale] will not be completely removed but slowed down by several orders 
of magnitude to the 'residual fringe frequency' ur~ = uf - u[ xp [1 to 10 mHz scale]. 
This is achieved by mixing signal vl with a harmonic signal of the expected fringe 
frequency ~,~xp. The mixing is done twice, using two signals in 'phase quadrature' 
(90 ° phase difference) so that at this point a complex number is generated in the 
digital signal stream used to compute the complex correlation coefficient P12, 

/ 8ync ,~  / / /  sTnc sync,  
t~12(u,v,r,~s]; t[s]) = ~v 1 v2;~ls/V~v 1 v 1 )" (v2v~.) (14a) 

with v~Ync(t ') = vl(t'[ps] + r~Xp[ms] + r ,  ~us]). e-J2"": "°t' , (15b) 

where vl, v2 are antenna voltages, and ~', = 0 ± p -  0.25ps [p = 0, 1,2,. . .].  Note, 
the correlation is done in a number of 'delay channels' r ,  spaced by 1/(2B) around 
% = 0 to allow for the uncertainty in the a priori knowledge of 7"g. The latter 
typically causes the peak of P12 to be located not exactly at ~'~, = 0 but offset by 
the 'residual delay' r ~  = rg -5 v ~  p = r - ~', on the ps scale. 

Fig. 5 shows, so to speak, part of a running 'interferogram' as it is displayed 
on the monitor of the VLBI processor during the correlation run. Under assump- 
tions ( a ) -  (f), Sect. 2 (we relax ass. h)), the interferometer response is described 
approximately by the expression: 

~12(u,v,~'; t) 0¢ A(u,v)e  -i(+(u'v)-~':(0) sin(~rBr)rBv e-i'(2v"'t-t-Br) . (15) 

This means the correlation signal ~12 has a quasi-sinusoidal form as a function of 
time due to the Earth rotation. The oscillation (frequency u ~ )  is modulated by the 
bandwidth effect (terms containing By, see (3),(4)), by the source structure effect 
(visibility Ae i~ , see (12)), and by the limited phase stability of the instrumentation 
and/or  the atmosphere (~12(t)). The signal is detectable only around its maximum 
at r = % q- rres = 0 providing the fringe amplitude A is well above the noise (13). 
~12 is constant and therefore without any effect for a perfect interferometer only. 
In VLBI ~12 fluctuates irregularly on time scales larger than the interferometer 
coherence time ~5 rain. Note that in general for a resolved source both A and 
are implicitly time dependent via u(t) and v(t) and vary on the same scale as 
as observing time goes on. This means that in general the visibility phase ~ is 
corrupted by the irregular phase fluctuations of the instrumentation and/or  the 
atmosphere and is therefore not directly measurable. 

It is instructive to remember some important characteristic time/frequency 
scales which play a role in the interferometric process. They obey the following 
inequalities (see also Tab. 1): 
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~'radlo[CHz] >> B[MHz] >> uf[kHz] > - -  
1 

tacc[S] 

1 1 

> tcoh[min] >> tobs[12h] (16) 
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3.4 S igna l  A n a l y s i s  a n d  P r i m a r y  Observa b le s  

The correlation signal is determined by the following measurable quantities or 
observables 

a) the VLBI delay rg = r~ xp + rres; rres = - %  (p = max) is measured by fitting 
the delay characteristic (4) to the signal and determining the maximum of P12 
on the r,-axis. 

b) the fringe frequency vf = v~ xp + Vres; Vres is determined by Fourier analysis of 
/~12 as a function of t ime over intervals of length tint ~ tcoh- This, at the same 
time, provides a "coherent average" of/912. 

c) the fringe amplitude A(u,v)= v/Re2#12 + Im2#12; 
d) the fringe or intefferometer phase # + #12 = -arctg(Im/~12/Re/~12). 

Fringe amplitude mzd phase are at this point coherently averaged quantities of 
the signal maximum. 
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3.5 VLBI  I mag ing  

Image reconstruction from VLBI data faces the following main problems: 
a) incomplete sampling of the Fourier plane ("holes" in the aperture), 
b) strongly corrupted phase ~i of the coherence function, and 
c) amplitude calibration problems because there are practically no point sources 

on the milliarcsee scale which would provide a fixed reference amplitude over 
the whole (u,v) plane. 

These drawbacks preclude image restoration by straightforward Fourier inversion 
of (12). Nevertheless around 1977/78 it was convincingly shown that these prob- 
lems can be overcome by iterative procedures (Readhead and Wilkinson 1978, 
Coruwell 1987). Of greatest practical importance are the "self-calibration" (see re- 
view by Pearson and Readhead 1984) and the "maximum entropy" methods (see 
review by Narayan and Nityananda 1986). 

Self-calibration is based on the crucial assumption that the N(N-1)/2 (num- 
ber of baselines) phase or amplitude errors ~ij = ¢i - ej at any given observing 
time can be reduced to N errors ¢i attributable to individual interferometer el- 
ements. This assumption holds well within a certain accuracy; it implies the va- 
lidity of the phase closure relation, which states that phase errors cancel when 
summing interferometer phases around a triangle of baselines, and the resulting 
sum, the 'closure phase' ~i12 -}- ~23 ~ ~31 contains true phase information. In a 
similar way one can at least partially achieve internal amplitude calibration (prob- 
lem (c)) by taking advantage of the fact that the ratio of measured amplitudes 
A1234 = A12A23/(A13A24), the 'closure amplitude' is independent of antenna gain 
factors (indices 1,2,3,4) and therefore contains true amplitude information. 

Problem (a) is overcome by applying the CLEAN method (HSgbom 1974) to 
deconvolve the point spread function of the "synthesized aperture" from the image 
at each iteration cycle. 

In principle there is a 'holographic' method also applicable to VLBI, called 
'phase referencing', which allows the full visibility phase to be retrieved. This 
requires a point source near (in the same isoplanatic patch as) the target source to 
be observed at nearly the same time. Then the error phases can simply be removed 
by subtraction (Alef 1989). 

See Table 1 for figures of merit concerning VLBI imaging and Figs. 6 and 7 
for an example of VLBI imaging. For VLBI polarimetry we refer to Roberts et al. 
(1990) and references therein. 

4 High-Precision Interferometry 

The term 'high-precision interferometry' is used here to include all those appli- 
cations of VLBI that rely on the exploitation of the group delay observable. It is 
this quantity which allows the determination of the "macroscopic" geometry of 
the interferometer, i.e. the baseline-source geometry that relates the location of 
the radio telescopes on the revolving Earth to the "infinitely" distaat compact 
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radio sources. These pointlike emitters without proper motion are ideally suited 
to serve as fixed beacons in the heavens, allowing us to monitor even the smallest 
departures from the computed motions of the receiving stations. 

The research fields that profit most from the geometric potential of VLBI are 
those dealing with the motions of the celestial bodies, in particular the Earth-Moon 
sytem, and the orientation and the size of the Earth itself: astrometry and geodesy. 
These fields are usually meant to imply a much broader area, namely fundamental 
astronomy and geo-sciences, such as geodesy, geophysics, oceanography etc.. The 
topic of gravitational light deflection is intimately related to all of these fields, 
because it forms part of the fundamental model describing the physical reality of 
VLBI. 

The VLBI model is developed using the knowledge presently available to math- 
ematically recreate, as closely as possible, the situation at the time of observation. 
This model then sets a standard against which a least squares parameter estima- 
tion algorithm is posed to determine the best values of the quantities to be solved 
for. Before this process starts, the raw observations have to be purged of several 
systematic effects, which in fact limit the final accuracy of the results. The flow 
diagram of a typical geodetic VLBI data analysis software package is shown in 
Fig. 10. 

The systematic instrumental effects include clock instabilities, electronic delays 
in cables and circuitry and deformations of the telescope structure. The instru- 
mental delay changes are monitored by the phase and delay calibration which is 
part of the MkIII system. In the telescope the distance between the feed horn 
and the axis intersection which constitutes the baseline reference point (Fig. 9), is 
assumed to be constant at the mm-level; in this case it becomes part of the clock 
offset parameter. Large telescopes such as the Effelsberg 100m antenna exhibit 
changes which can, however, be modeled to a level of a few millimeters (Rins et 
al. 1987). 

The  effect of the atmosphere on VLBI observations is considered to be the 
most serious problem, because at widely separated stations the elevation angles 
of the source during a scan differ greatly as well as the meteorological conditions 
themselves. The ionosphere, which is a highly dispersive medium in the lower radio 
frequency bands, can be dealt with to first order by using two different observing 
frequencies. In geodetic VLBI the NASA frequency pair of 2.3GHz (S-band) and 
8.4GHz (X-band) is used throughout. 

The influence of the neutral atmosphere, essentially the troposphere, on radio 
signals adds up to an extra zenithal path of 1.8 to 2.5 meters. The contril)ution of 
the dry part is rather stable, although care has to be taken to choose a proper model 
function for the lower elevation angles (Davis et al. 1985). The wet component, 
although the smaller part of the total tropospheric effect, changes rapidly and 
has to be monitored by some means. The most promising - albeit costly - method 
appears to be the radiometer technique, which consists of measuring the microwave 
thermal emission from water vapour near 22GHz in the line-of-sight (Elgered et 
al. 1989.). 
Now let us turn to the model side of the geodetic analysis. 
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The fundamental observation equation relating the group delay to the baseline 
and source vectors may be written in its simplest form: 

b . k  
"to - (17)  

c 

The baseline vector components bx, by, bz are referred to the instantaneous Earth 
rotation axis. The unit vector of the source k points to the apparent position at 
the time of observation 3. The negative sign accounts for the fact that the motion 
of the incoming wave front is opposite to the direction of the unit vector k and 
the time delay is defined "1" =- t2 - tl. 

At this stage there are 3 -t- 2n fundamental parameters to be determined in 
a least squares fit: the three baseline components bx, by, bz and the coordinates 
a,  6 of n observed sources. Due to the fact that the offset between the clocks at 
both stations is not known to better than around lOOns, clock parameters (usually 
offset and rate) have to be added to the solution. Therefore, minimal solutions 
are possible only with observations on at least three epochs and to at least two 
different sources. Usually a set of 12 to 18 sources spread over the sky as evenly as 
possible is used in a schedule of 24 hours during which these sources are observed 
in an interleaved mode in order to optimise the geometric condition of the solution. 

In view of the extremely high precision inherent to VLBI the modeling accuracy 
has to be brought down to a level of better than one centimeter on the global scale. 
Great efforts have been made to develop comprehensive geodetic VLBI data analy- 
sis software systems which include all aspects of the multi-faceted reality of VLBI. 
Here we shall take a summary look at the most important model components with 
more emphasis only on the relativistic part of the model. 

The fundamental geometric model of the time delay rg forms the heart of the 
system. This model has evolved from its basic form in a geocentric system to 
the fairly complex relativistic formulation in the solar system barycenter (SSB) 
(Finkelstein et al. 1983, Hellings 1986, Soffel et al. 1991): 

A-(b-R) [(1~- k ) /2  A-(,;2" k)]/c3-~-0(U A- 1~2/2 + h .  ,:2)/c 2 

- - (b -h ) / c  2 + rgmv (18) 

o.~.v - (1 + 'y)r  ° ln [R1 + l z l  ~ ]  (19) 
c ~ 2 2 + R  2 

[rl 1 (20) r$ v - (1 In + R2" k J 

where r ° and r ¢ are the Schwarzschild radii of the sun and the Earth. For the 
other bodies in the solar system (at present only Jupiter is considered when it is 
closer than 10 ° to any of the observed sources) the corresponding Schwarzschild 

3 Note :  in th i s  c h a p t e r  and  in Fig. 8 the  s y m b o l s  b a u d  I~ are emp loyed  ( i n s t e a d  of d a r t d  .9, 
Eq. (6))  in o rde r  to  conform to s t a n d a r d  usage  in th is  field. 
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radii and the vectors from these bodies to the VLBI antennas have to be used in 
the above formula (19). 

The complete relativistic formulation above (as implemented in the CALC, 
MkIII Data Analysis System, Ma 1978) includes both the effects of special rela- 
tivity (SRT) and of general relativity (GRT), but for practical reasons these are 
treated separately and added together on the level of the time delay. 

The effects of special relativity arise from the fact that quantities defined in 
coordinate frames moving relative to each other have to be related by transforma- 
tions of the Lorentz type with v/c  as the characteristic quantity in the time delay 
correction terms. The choice of two particular coordinate systems (the SSB and 
the geocentric system) used to describe the VLBI model arises from practical con- 
siderations: the motions of bodies in the solar system and the positions of the radio 
sources are most readily defined in the SSB, while the actual baselines between 
the telescopes are usually required in a geocentric system (Fig. 8). The vector R 
describes the velocity of the geocenter with respect to the SSB (..~ 30kin/s) and 
~;2 is the velocity of the station 2 with respect to the geocenter (6  0.46kin/s). In 
the geometric VLBI model these velocities have to be computed with an accuracy 
of 10-6 in order to guarantee picosecond delay accuracy. 

The last two terms in the full equation (18), which is a polynomial representa- 
tion for picosecond accuracy, account for the difference in SSB-coordinate time and 
geocentric proper time as well as for the fact that the station clocks are located 
at fixed points on the Earth's crust. Here, U is the magnitude of the gravitational 
potential of the solar system at the geocenter. 

The effect of gravity on the propagation of electromagnetic waves (GRT) is no 
less important, as was pointed out by Shapiro in 1979 (NASA VLBI conf.). Even 
at an angle of 1800 away from the sun the differential delay effect for a 6000 km 
baseline is still 0.4 ns (Tab. 2). 

According to GRT, space-time is deformed by the presence of masses. The 
most massive object in our vicinity is of course the sun, which accounts for more 
than 99% of the total effect. An impression of the enormous impact of r~;r~ v on the 
observed group delays of a typical geodetic VLBI experiment is shown in Fig. 12. 
The residual spread is greater by a factor of ~ 5 if "rgrav is neglected (Schuh 1987). 
However, at the present accuracy level of VLBI the major planets also contribute 
a bending effect which:cannot be entirely neglected. If Jupiter arrives within a few 
degrees of an observed source, its influence on ray bending has to be taken into 
account (Tab. 2). Another small but significant contribution (~  20 ps) comes from 
the gravity field of the Earth itself. 

The formulation for "rgrav shown here in (19) and (20) is implemented in the 
current version 7.0 of the CALC MkIII VLBI software (Eubanks (ed.) 1991). 

Since the early 80's VLBI observations have been used extensively to test Ein- 
stein's theory in its Parameterized Post Newtonian formulation (PPN). Two ap- 
proaches have been used, one designing special experiments to observe sources 
such as 3C279 and 3C273 during their close approch to the sun (Fomalont and 
Sramek 1977, Shapiro 1967) and the other using all available data from routine 
geophysical experiments to achieve the accuracy by the sheer number of the oh- 
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servations (Carter et al. 1985). In the case of specially designed experiments with 
observations close to the sun, one has to cope with the effects of the sun's radio 
noise (loss in SNR) and the coronal path delays. While the latter can be removed 
to a large extent by dual frequency observations (e.g. in the S/X bands), the for- 
mer requires strong sources and a trade-off consideration between distance from 
the sun and strength of the gravitational bending effect. 

The -/-factor, which in the Einstein theory should be equal to unity, has been 
found to show no significant departure from this value to the level of 0.1%. Recently 
this accuracy level has been further improved to 0.02% (Robertson et al. 1991). 
Attempts have also been made to verify the gravitational bending near Jupiter, 
but the effect is only marginally significant (~  lOOps) at close (~  several arcmin) 
encounters (Campbell 1989, Treuhaft and Lowe 1991). 

The description of the Earth's orientation with repect to the celestial system 
(precession, nutation) and the motion of the Earth's axis with respect to the crust 
(polar motion) has to reach the same level of accuracy as all the other model 
components, which means roughly if:001. The same holds true for the rotational 
speed of the Earth about its axis. To compute the phase angle of the Earth's 
rotation to 1 milliarcsec the UT1 variations have to be known to better than 
0.1 msec. For VLBI these requirements cannot be met without parametrisation. 
Therefore, with longer series of VLBI experiments, the nutation parameters in 
longitude and obliquity, and the components of polar motion Xp, yp plus UT1 are 
included as parameters in the least squares solution. Also, precession can be solved 
for if longer time spans of data are analysed. 

Periodic and aperiodic deformations of the Earth's crust have to be taken into 
account as well. Solid Earth tides show diurnal and semidiurnal oscillations with 
vertical amplitudes of about 40 cm and horizontal displacements of about 10% of 
the vertical effect. Although good models are available, the relevant parameters 
(the Love numbers) can be estimated from larger sets of data (Herring et al. 1983). 
More difficult to model are the tidal loading effects of the oceans, which amount 
to as much as a decimeter on some coastal or island sites (Schuh and MShlmn.nn 
1989). The loading effects of the atmosphere also reach the level of significance in 
VLBI modeling. 

Solutions with large data sets are stable enough to produce precise source po- 
sitions simultaneously with the baseline components and other parameters. The 
positions of some fifty compact radio sources, distributed over the whole north- 
ern sky, are by now known at an accuracy level of 1 milliaresec (Ma and Shaf- 
fer 1988). Over short (~0. ° 5) arclengths even much higher positional accuracies 
(~10 microaresec) have been achieved by means of differential methods (Shapiro 
et al. 1979, Marcaide and Shapiro 1983). Using the southern stations at Harte- 
beesthoek/South Africa and Hobart/Tasmania the source list is being extended 
southwards to achieve a nniform coverage of the entire celestial sphere (Carter et 
al. 1988). 

A major problem is constituted by the fact that most of the observed compact 
sources tend to show structure at the level of a few miUiarcsec. These effects, in 
particular the changes in the structure, pose a limit on the accuracy of the radio 
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reference system. Continuous monitoring of the structure, which is also accom- 
plished by analysing VLBI data can be done in parallel to the geodetic analysis, 
thus providing a means of correcting for the structure effects (Schalinski eL al.1988, 
Campbell et al. 1988). 

The system shown in Fig. 10 can be seen to have two main streams, one con- 
taining the actual observations which undergo the successive instrumental and 
environmental corrections, and the other to produce the so-called theoreticals, be- 
ginning with the "a priories", a set of starting values for the parameters to be 
estimated. Both streams converge at the entrance to the least squares algorithm, 
where the "observed minus computed" are formed. 

In geodetic VLBI data processing there are two levels of least squares solu- 
tions, one in which only the "local" unknowns are estimated (such as clocks and 
atmospheric parameters) thus creating a first data base version of each particular 
experiment, and another which collects all available experiments for a combined 
solution including the "global" unknowns such as station and source positions, 
Earth rotation parameters, etc. and - last but not least - the 7PPN parameter. 

/ I  Barycenter L 

Geocenter e.oo .] 

F i g .  8.  V L B I  g e o m e t r y  l:efetred to solar  F i g .  9. T h e  20 m radiof~elescope of t he  
sys t em b0.rycenl.er ( S c h u h  1987) geode t ic  f u n d a m e n t a l  s t a t i o n  W e t t z e l l ,  

Bava r i a ,  G e r m a n y  
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T a b l e  1. Ins t rumenta l  Characteristics of VLBI (1991) 

Angular resolution (0.5. A/d± ) 
rms noise ~(Scorr) 
Point source detection limit 

Imaging capability 
Minimum object flux S~ (rain) 
Observing time required 
Dynamic range 
Polarisation mapping 

Measurement accuracies 
Group delay r 
Delay rate + 
Baseline length d 
Polar motion 
UT1 variation 
Time resolution 
Source position 
Relative source position 

Technical characteristics 
Standard observing wavelengths A 
Standard frequencies y 
Experimental wavelengths 
Experimental frequencies 
Antenna diameter D 
Baseline length d 
Relative frequency stability 6v/v 
Clock synchronisation accuracy 
haterferometer coherence time tcoh 
Coherent integration time tint 
System noise temperature Tsys 
Sampling rate 
Recording bandwidth B 
Spanned bandwidth Bs 
Group delay rg 
Natural fringe frequency vf = v+ ,.~ 
Crosscorrelation coefficient p12 
Accumulation time tact 
Residual fringe frequency v~ ~ 
Duration of observing run robs 

ff'001-(A/cm) / (d±/1000 km) 
1 mJy = 1 • 10-29Win-2Hz-1 
7-~(S¢o~) 

80mJy (B = 56 MHz) 
12 hours 
I00 : 1 (few cases: 0 ( I 0 0 0 : I ) )  

first steps at 0"001 resolution 

1.5 x 10-11 s (Bs=360 MHz) 
1.0 x 10-13 s/s 
1.5 cm for d£  6000 km 

£ if:001 
~ O.lms 

lday ( ~ 2 h f 0 r U T 1 )  
if:001 (whole sky) 
(10 x 10-6)" (arc length ~0.°5) 

92, 18, 13, 6, 3.6, 2, 1.3 cm 
.33, 1.7, 2.3, 5.0, 8.4, 15, 22 GHz 
7 ram, 3.5 ram, 1.3 mm 
43 GHz, 100 GHz, 230 GHz 
10 to 100 m 

10,000 km 
I0-15 (H-maser) 

,.~ 1/~s a priori 
10 rain (A ~ cm) 

~_ tcoh 
100K ( A ~ c m )  

_~ 224 Mbit/s (future: 2 Gbit/s) 
_~ 112 MHz (future: 500 MHz) 

360 MHz (future: 720 MHz) 
3.3 ms- d H [1000 kin] 

7.3 kHz cos 6 dew[1000 kin] / A[cm] 
10-Sto10 -3 

# ( ' )  1 s def.: 12 oc VlV 2 t(ace) 
1 to 10mHz 

12 h (geodesy: ,,~24 h) 



122 

T a b l e 2 .  G r a v i t a t i o n a l  p a t h  delay as a func t ion  of sphe r i ca l  d i s t a n c e  O from the  Sun  

and  Jup i t e r .  Given  are m a x i m u m  values  for a 6000 km base l ine  (Sc huh  1987) 

O(Sun)[ °1 rsav[ns] O(Jupiter)[ °1 rJr,v[ns] 

0.267 i69.52 Rim 1.582 
1 45.30 0.017 (~ 1') 0.605 
5 9.06 0.167 (~- 10') 0.062 

10 4.54 0.5 0.021 
30 1.53 1 0.010 
60 0.79 5 0.002 
90 0.56 10 0.001 

120 0.46 
150 0.41 
180 0.4O 

5 VLBI Today and Tomorrow 

It is clear from what we have said before that VLBI observations yield de- 
tailed information on all astrophysical processes which produce compact radio 
sources (brightness temperature Tb ~ 106K), and on all geophysical processes 
which change the vector spacings between radio telescopes fixed to the Earth's sur- 
face or which cause irregularities in the Earth's rotation (geodynamical processes). 
VLBI also enables Us to test and discriminate between gravitational theories by 
measuring the light deflection or path delay caused by the sun and its planets. 

The increasing angular resolution and precision of VLBI allow the investigation 
of processes causing short term variability of the astro- and geophysicaUy relevant 
observables. Both the structure of radio sources on miUiarcsec scales and the geo- 
physical quantitities have been found to vary on time scales ranging from years to 
weeks or even days. It is the signature of the temporal behaviour of the observed 
phenomena which carries key information on the underlying physics. This is why 
monitoring programs have become more and more important for both astro- and 
geophysics. 

The apparently brightes't and therefore most easily observable compact sources 
(~ if:01) at dm/cm wavelengths are the nonthermal continuum sources found in 
the nuclei of quasars and radio galaxies, and the line-emitting H20 (~ 1.35 cm) 
and OH (~ 18 cm) maser sources found near newly formed or evolved stars. There 
axe thousands of compact extragalactic and hundreds of maser sources in the 
sky. Most of the current astronomical VLBI observations axe devoted to these 
objects. Higher sensitivity is required for the observation of radio nuclei in nearby 
(mildly) active galaxies, of nonthermal continuum sources associated with nearby 
flare stars or X-ray binary stars, and for the observation of molecular masers in 
external galaxies. 
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With the milliarcsec resolution of intercontinental VLBI networks one typically 
achieves spatial resolutions on scales of about 1 to 10 pc for radio galaxies and 
quasars, of about 0.5 to 5 AU for interstellar molecular masers within our galaxy, 
and of about 0.05 AU for nearby stars (Fig. 13). 

The exact location of very compact objects relative to a well-defined mass cen- 
tre (star, galaxy) is mostly uncertain. They are, as far as we know, often associated 
with, or embedded in, zones of inflow on to or outflow from their parent objects 
covering wide ranges of size and power. Physical processes which can generate 
compact emission are: accretion on to collapsed massive objects in the centres of 
galaxies (AGNs) or on to collapsed stars (X-ray binaries); collimated outflow (jets) 
from AGNs or collapsed stars; outflow in star forming regions (H20, OH masers), 
"superwinds" from late-type stars (HxO, OH masers), and outbursts on stellar 
surfaces. 

Compact radio sources have a multiple function: they are fascinating objects 
in their own rightl but at the same time they are diagnostic tools for probing the 
underlying larger scale processes such as collimated outflow from AGN or newly 
formed stars. Most remarkable is the use of molecular masers (expanding point 
source clusters) as distance indicators, finally the use of extragalactic sources as 
reference points for geodetic and geodynamical measurements. 

Some important areas of impact of VLBI on astrophysics are summarized be- 
low; the order is by classes of compact sources, i.e. the immediate targets of ob- 
servation. 

• Extragalactic radio sources (quasars, radio galaxies, BL Lac type objects, 
Seyfert galaxies, mildly active galaxies): 
- physics of the "central engine" in AGNs, 
- physics of collimated outflow, the role of relativistic bulk motion, 
- relation between radio emission and emission in other spectral domains, 
- reference sources for astrometry and geodesy, 
- gravitational lenses, 
- scintillating background sources (interstellar medium). 

• H20 and OH masers in our galaxy: 
- physics of masers and their environment, 
- kinematics of outflows in proto-stellar nebulae, 
- mass-loss from late-type stars, giants, supergiants, 
- distances within the Galaxy via the "statistical parallax" method, 
- scattering properties of the interstellar medium. 

• Extragalactic masers: 
- physics of "megamasers", 
- distance to nearby galaxies, Hubble constant (space VLBI). 

• Continuum sources associated with stars: 
- nearby flaring stars, 
-- X-ray binary stars, 
- pulsars (astrometry). 
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Astronomical VLBI observations are nowadays normally done within the frame- 
work of networks which dispose of block time committed to VLBI by member 
observatories. About 30 radio telescopes located in about 20 countries take part 
in VLBI activities, and more than fifty axe expected to do so in the near future 
(Fig. 1). The largest global VLBI experiments have used 18 stations. 

While early VLBI observations were organised as ad hoc collaborations of ob- 
servatories, VLBI networks in the USA and Europe, starting in the late 1970's, 
have turned into facilities run like single observatories and open to any competent 
user from the international community. The European and US VLBI networks 
typically run 4 observing sessions per year. The 100 m telescope near Bonn, for 
example, is committed to 90 days of VLBI observations per year, and it actu- 
ally spends about 30% of its local observing time on VLBI. The networks have 
program committees for assessment of observing proposals, central scheduling of 
VLBI block time, "absentee observing", VLBI processing centres, and software 
packages for signal analysis and image reconstruction. 

The US Network is about to be replaced by the VLBA (Very-Long-Baseline 
Array) (Romney -1988). The VLBA will be the world's first dedicated multipur- 
pose VLBI network. The array will be available for astronomical and astromet- 
ric/geodetic observations. It will consist of ten 25 m antennae, in a configuration 
optimized to provide high resolution and high image quality in a large field of view 
over a wide range of declinations. 9 frequency bands from 330 MHz to 43 GHz are 
planned. The operations centre will be in Socorro, New Mexico. By combining the 
VLBA with large telescopes, it will be possible to form a very sensitive global (..~ 
20 station) array. 

Table 1 summarises the current instrumental performance of VLBI. Processing 
centres r~mn~ng broad band (~50 MHz) correlators, currently in operation or in 
progress, are in (type, number of station inputs, comment): 

- Haystack, Ma., USA (MkIII A, 6, astronomy, geodesy), 
- Washington, D.C., USA (MkIII A, 5, geodesy), 
- Bonn, Germany (MkIII A, 6, astronomy, geodesy), 
- Kashima, Japan (K3, 2, geodesy; K4, ~10, space VLBI, planned) 
- Socorro, NM, USA (VLBA, 20, astronomy, geodesy, under construction) 

Some technical developments will have a considerable impact on future VLBI; 
these include improved VLBI systems, mm-VLBI, and space VLBI. 

Important figures of merit describing the practical use of VLBI systems are: 
the maximal recording rate (= 2 × B for 1-bit sampling), the recording density on 
given storage media (magnetic tapes), and the number of baselines which can be 
correlated simultaneously at a given bandwidth. Corresponding numbers for the 
widely used Mark IIIA system are: 224 Mbit/s (recording rate), 3 hours of 56 MHz 
data on one tape, correlation of 12 baselines at 28 MHz simultaneously (Bonn 
MkIIIA correlator, 1992). The MkIII system and its more advanced versions 
(MkIIIA, MkIV) have been developed at Haystack Observatory, USA (l~gers 
et al. 1983, Whitney 1988, Webber and Hinteregger 1988). The MkIV system 
will be operational in the near future. Maximum recording rates of 1 Gbit/s and 
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recording at 128 Mbit/s for 24hours on one tape will be possible. Other VLBI 
systems which have been developed in recent years, and which are about to come 
into operation, are: the VLBA system (Romney 1988), the Canadian $2 system 
(Wietfeldt et al. 1992), and the Japanese K4 system (Kawaguchi 1992, Chikada et 
al. 1992). Some of these systems are (within limits) compatible. In principle all of 
them can be made compatible via appropriate interfaces. 

Millimeter-VLBI has made considerable progress in recent years; see Krich- 
banm and Witzel (1992) for observations at 43 GHz and Baath (1992) for 100 GHz 
VLBI. At 3 mm an angular resolution of 50 microarcseconds has been achieved. 
After improvements in receiver techniques the sensitivity of mm-VLBI is at the 
moment mainly limited by the short instrumental coherence time (,-~30 s at 7 mm, 
~-,10 s at 3 mm) and the limited number of the required large telescopes (collect- 
ing area). The future broad band VLBI systems will be most helpful in further 
enhancing the sensitivity of mm-VLBI. 

The technical feasibility of space VLBI has been demonstrated by two exper- 
iments (Levy et al. 1986) involving a 4.9 m antenna on a TDRSS (Tracking and 
Data Relay Satellite System) satellite in conjunction with two ground based 64 m 
radio telescopes in Australia and Japan. The longest baseline used in these exper- 
iments was 2.2 Earth diameters. There are two approved dedicated space VLBI 
missions, both plz.nned to be launched around 1995: the Japanese mission VSOP 
(9m antenna, 20,000 km orbit) and the Russian mission RADIOASTRON (10m 
antenna, 80,000 km orbit). Observing wavelengths will be 1.35 cm, 6 cm, 18 cm, 
and (Radioastron) 92 cm. 

Prom the very beginning the scientific motivation for the development of VLBI 
came from both astrophysics and geophysics. Shapiro gave a detailed description of 
the expected geophysical applications of VLBI as early as in 1969 at a conference 
held in London, Canada, on "Earth-quake displacement fields and the rotation of 
the Earth" (Shapiro and Knight 1970). In the following two decades virtually all 
of the goals mentioned there and even more could be achieved: 

• the creation of a quasi-inertial extragalactic reference system as a basis for 
astrometry to study galactic rotation and to improve the distance scale of the 
universe. Recent results of stellar astrometry with HIPPARCOS are being tied 
to the extragalactic reference system. 

• the realization of a global terrestrial reference system in order to satisfy the 
needs of global geodetic and navigational systems (including spacecraft navi- 
gation), 

• monitoring the Earth rotation parameters (polar motion and UT1 variations) 
with the highest possible resolution for a better understanding of the kinemat- 
ics and dynamics of the "System Earth", i.e. the Earth in space, the effects of 
the atmosphere and the oceans, and the processes in the Earth's interior, 

• the determination of improved coefficients for precession and nutation and the 
estimation of the Earth's elasticity parameters, thereby also contributing to a 
more comprehensive understanding of the System Earth (Herring et al. 1986), 
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• the determination of regional and global crustal motions to verify the plate 
tectonical models and to study the processes at the plate boundaries, with the 
aim to contribute to earthquake prediction research, 

• the determination of the ")rppN parameter in General Relativity. 

Today the accuracies required to attain these goals have been demonstrated by 
hundreds of VLBI experiments on baselines connecting almost all major continents 
of the globe. In order to combine the efforts in different countries around the world 
in realising these goals, several programs of international cooperation have been 
launched, among which the following are the most important: 

- The NASA Crustal Dynamics Project (CDP) 
This project is part of a US Federal program involving several government 
agencies for the application of space technology to crustal dynamics and earth- 
quake research. Cooperative arrangements have been made with European and 
other countries extending the project to a global research program (NASA 
1988). The VLBI part of the CDP comprises regular experiments (10-20 each 
year) of one to three days duration between the major geodetic VLBI facilities 
in the US, Europe and in and around the Pacific Ocean. In addition so-called 
bursts of observations are carried out each year using the mobile VLBI units 
to monitor tectonically interesting sites in California and Alaska (NASA 1988, 
Ma et al. 1989). 

- Project IRIS (International Radio Intefferometric Surveying) 
The aim of the IRIS program is to conduct VLBI observations at regular 
intervals to monitor polar motion and UT1. This observational program be- 
gan in 1980 under the acronym of POLARIS and has been extended in sev- 
eral steps. It now comprises three networks, the original IRIS-A (Atlantic) 
network with three stations in the USA (Westford, Richmond and Mojave) 
and two in Europe (Wettzell and Onsala), the IRIS-S (South) network with 
Hartebeesthoek added to IRIS-A and the IRIS-P (Pacific) network combin- 
ing four stations around the Pacific (Kashima/Japan, Hobart/Tasmania, Fair- 
banks/Alaska, and Mojave/California) (Carter et al. 1985, Carter et al. 1988). 

Both programs have profited significantly from the broad international cooper- 
ation and have produced impressive results. The determination of Earth rotation 
parameters by the IRIS network has superseded the classical methods with respect 
to accuracy and time resolution. The data have begun to show hitherto unseen 
phenomena such as the influence of the zonal winds of the atmosphere and depar- 
tures from the normal state, e.g. the E1 Nifio events in the southern Pacific (Chao 
1989). Even the short period tidal influence of the oceans could be detected using 
large numbers of data sets (Brosche et al. 1991). 

Both the IRIS project and NASA's Crustal Dynamics Program (CDP) could 
in recent years~ for the first time see relative motions of tectonic plates; this is 
a most remarkable moment in the development of plate tectonics which started 
with Wegener's continental drift hypothesis in 1912. The baseline length changes 
detected by VLBI can be seen to confirm the plate models to a surprisingly good 
level (Ma et al. 1989). A prominent example is the 6,000 km Westford to WettzeU 
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baseline which now has a record of nearly 8 years of uninterrupted observations 
and displays a very significant trend (1.8 4- 0.1 cm/y) which is in good agreement 
with the predicted relative tectonic motion of the Americaa and Eurasian plates 
(Fig. 11). Problems occur of course at stations near the plate boundaries, where 
the influence of the processes associated with the formation and subduction of the 
crust can be clearly seen (Heki et al. 1990). 
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A b s t r a c t  

We describe a space-borne experiment to detect the Lense-Thirring field pro- 
duced by the proper rotation (mass-current) of the Earth. This gravitomagnetic 
field will generate an increasing signal in a gravity gradiometer orbiting the Earth in 
local inertial (gyroscope) orientation. For a polar orbit of 600 km altitude, the sig- 
nal will grow with a (constant) rate of about 2 x 10-4E per month (1E = 1 EStvSs 
= 10-9sec-2). In view of instrumental accuracies achieved in the last years, this 
effect could, in principle, be detected at present by Palk's high-sensitive supercon- 
ducting gravity gradiometer in combination with precise gyroscopes placed in a 
drag-free Earth's satellite. A preliminary error analysis for the experiment indi- 
cates that  the effect could already be measured after ~ 1 month with sufficient 
accuracy (relative error of ~ 1%). To achieve this, precise gyroscopes would be 
necessary, which, however, were allowed to be less precise than the present Stan- 
ford gyroscopes by a factor of ~ 20. In addition, we present a method for isolating 
the gravitomagnetic signal from the dominant Newtonian background. 

1. I n t r o d u c t i o n  

It belongs to one of the fundamental consequences of Einstein's general rela- 
tivity that  the proper rotation of a mass will generate a gravitational "magnetic" 
field, which, for masses such as the Earth or the Sun, is similar to the magnetic 
dipole field of a rotating electric charge (Thirring 1918, Lense and Thirring 1918). 1 
For slowly rotating masses (Earth, Sun), the Lense-Thirring field is expected to be 
extremely weak. As yet, it has not been detected. 

The proper rotation of -a mass gives rise to a dragging of local inertial frames. 
An experiment to measure this (mass-current) effect was initiated by Schiff, Fair- 
bank, and Everitt 2,3 in the 1960's, the Stanford Gyroscope Experiment. This space 
experiment, now also known as Gravity Probe B (GPB), is expected to be per- 
formed in the next few years. The possibility of measuring the Lense-Thirring drag 
by analyzing the orbital motion of Earth's satellites has also been investigated. The 
most recent proposal in this direction is due to Ciufolini. 4 

The present paper is concerned with a further consequence of the proper ro- 
tation of a mass. It is the influence of the gravitomagnetic field of  the mass on 
the relative (tidal) acceleration of neighboring test particles. Within the weak-field 
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approximation, this has first been discussed by Braginsky and Polnarev, 5 where the 
gravitomagnetic "forces" acting on two test masses at the ends of a spring (in an 
Earth's orbit) have been calculated with respect to the post-Newtonian coordinate 
frame. Using the  invariant concept of Fermi frames, the gravitomagnetic contribu- 
tion to the relative acceleration of test particles orbiting a rotating spherical body 
has been investigated by Mashhoon and Theiss. 6-9 (For more recent work on this 
subject see also References 10-15.) It was shown that this contribution will increase 
with time, and, for a circular inclined Earth's orbit of low altitude ( ~ 600 km) ,  it 
would become comparatively large already after about 1 month. 

This secular (cumulative) relativistic effect could open a new possibility for 
detecting the Lense-Thirring field of the Earth by using already available technolo- 
gies. 

2. T h e  G r a v i t o m a g n e t i c  Effect  in t h e  Grav i ty  G r a d i e n t  and  I t s  Or ig in  

Consider a set of three spinning (orthogonal) test gyroscopes falling freely 
along an inclined circular geodesic orbit with (constant) radius r about a slowly 
rotating central body 16 (such as the Earth or the Sun) of mass M and proper 
angular momentum of magnitude J (J  E B.). The motion of the spin axes of these 
(torque-free) gyroscopes, which constitute a local inertial frame along the geodesic 
orbit, is governed by the equations of parallel transport (to a good approximation). 
By solving these equations ~-9 using the post-Schwarzschild approximation, 17 it 
can be shown that  the motion of the gyroscope axes with respect to an effective 
Newtonian frame (sidereal frame) is consists of precessional motions superposed by 
a specific nodding up-and-down movement. The latter motion, a new relativistic 
effect of purely gravitomagnetic origin, has been referred to as relativistic nutation; 
see also References 13-15 and 19. The other, precessional, parts of the motion are 
dominated by the Fokker effect (geodetic precession). This (Fokker) effect has been 
recently detected in the motion of the Moon. 2° 

Denote the proper time of the geodesic orbit by ~- and choose one axis of the 
sidereal frame of reference so that, at the beginning of measurement (T = 0), it 
coinsides approximately with a vector normal to the orbital plane. Relativistic 
nutation is a periodic variation of the angle between this axis of the sidereal frame 
and a gyroscope axis. The leading contribution @~ of relativistic nutation to this 
angle can be written as 

®,  ~ ~ sin(a)[sin(wET + T0) -- sin ~/0] , (i) 

where ~ = J / M w r  2 and the constant 7]0 denotes the azimuthal position of a test 
particle (satellite) in the plane of the geodesic orbit at T = 0 measured from the line 
of the ascending nodes. Here w = GX/--G-M-/r3 approximately describes the orbital 
frequency in the absence of rotation (J  = 0), and a denotes the inclination of 
the orbit to the equatorial plane of the central body; the gravitational constant is 
denoted by G. The frequency of this nutational oscillation is equal to the Fokker 
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frequency 
-~ 3 G M  

wF = 1 -  3 G M ~  - 1  w~- - - - w .  (2) 
c2r ] 2 c2r 

The nutation amplitude ~ sin a, remarkably, does not depend on the velocity of light 
c. This fact can be traced back to the occurrence of a small divisor 6-9,19 involving 
the Fokker frequency we. In the post-Newtonian limit of the post-Schwarzschild 
approximation, 17 Eq. (1) reduces to 

On w T, (3) 

which represents a precessional motion with frequency 

3 GJ  
- -  sin a cos ~o --- ~ sin(a)w~ cos ~o. (4) Wn -- 2 c2r3 

(Eq. (3) simply follows from the expansion of Eq. (1) to second order in 1/c.) The 
comparison of Eq. (1) with Eq. (3) shows that the post-Newtonian approximation 
breaks down over time scales of the order of the Fokker period Tv = 2~r/wF, 9,19 
since, e.g., after ~- = (~ -- ~/0)/we, the angle ®n of relativistic nutation decreases 
according to the (more precise) expression (1), whereas the corresponding post- 
Newtonian result, Eq. (3), shows a further increase of On; see also References 14 
and 15. However, along the orbit of a satellite about the Earth, the Fokker period 
amounts to ~ 10 ~ years; for the orbit of the Earth about the Sun it amounts to 

67 million years. The post-Newtonian approximation is, therefore, sufficient to 
describe the observations in the solar system. From Equations (3) and (4) it follows 
that, in the post-Newtonian limit, relativistic nutation shows up as a specific (non- 
vanishing) part of Schiff precession, 21 where the magnitude of this nutation part is 
given by w~z. 

Let us now consider the influence of the Lense-Thirring field of the central 
body on the relative (tidal) acceleration of two nearby test particles T1 and T2 
and the origin of this relativistic effect. Assume that T1 moves along the circular 
geodesic orbit (reference orbit). With respect to a local inertial (orthonormal) 
frame {A~} = {(A~,)},22 represented by the spin axes of the three orthogonal test 
gyroscopes, the tidal acceleration, i.e., the acceleration of T2 as measured from T1, 
is given by 

d2xi 
- K~jx j , (5) 

dT 2 

where the K~j and the x~ denote the elements of the tidal matrix and the rel- 
ative (Fermi) coordinates of T2, respectively. The elements Kij are defined by 
R.~ooAI*Ai~),eAj~ with the (covariant) components R,.e~ of the spacetime curva- 
ture tensor and the components A" of the tangent vector of the geodesic orbit. 
Along the orbit, the gravity gradient F of the gravitational field of the central 
body in the direction of particle T2 can be described by the tidal acceleration per 
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separation x = ~ of T1 and T2 projected to the unit three-vector n = x/x  
(X -~ (xl,x2,x 3) T), i.e.,S,7 

F = -Kijnin j , (6) 

where the n i = x~/x are the direction cosines of T2 measured with respect to the 
gyroscope axes ({)`i}). In the following, we fix a specific initial orientation of the 
)`i relative to the circular geodesic orbit (of T1): At the beginning of measurement 
(~- = 0) let )`1 point approximately in radial direction away from the central body, 
),2 in a direction opposite to the orbital angular momentum vector of particle T1 
about the central mass, and )`a in the direction of motion of T1 along the geodesic 
orbit. By such an orientation of the Ai one can achieve that the angle On of 
relativistic nutation essentially vanishes for each gyroscope axis at T = 0. This is of 
importance in connection with the measurement of the Lense-Thirring contribution 
to the gravity gradient, since the leading terms of this contribution (perturbation) 
then vanish initially (see below); for details cf. References 7, 9, 14, and 19. In what 
follows, we always refer to this specific orientation of the local inertial frame of 
reference. According to the post-Schwarzschild approximation, 17 the contribution 
of the Lense-Thirring field of the central body to the gravity gradient F contains 
the expression 

6w2, sin asin (1wF~-) l (7) 

as the leading amplitude. It results from the off-diagonal, purely gravitomagnetic 
elements/(12 (radial-normal at T = 0) and K2a (normal-tangential at T = 0) of 
the tidal matrix; see References 6-9, 14, 15, and 19. This amplitude (7) is directly 
proportional to the amplitude of relativistic nutation (~ sin a) and, therefore, shows 
a maximum (at ~- = ~-F/2) which is independent of the speed of light c. In the 
post-Newtonian limit of the post-Schwarzschild approximation 17 (W~T << 1), the 
amplitude (7) becomes secular and directly proportional to T; one has 

(8) 
Here we = 3GMw/2c2r (to second order in 1/c); cf Eq. (2). (The result (8) 
is in agreement with the post-Newtonian calculations performed more recently in 
References 11 and !2.) From the comparison of Equations (1)-(4) with (7) and 
(8), it becomes obvious that this secular amplitude originates from a coupling of 
the nutation part of Schiff precession with the amplitude (~_ 3w 2) of the Newtonian 
contribution to the gravity gradient; see especially References 9, 14, and 15. In this 
Connection it is also important to note that w,, and the amplitude (8) vanish for an 
equatorial orbit (c~ = 0) in contrast to the frequency of the full Schiff precession. 
As was mentioned above, for time scales much shorter than the Fokker period, 
the post-Newtonian approximation is completely adequate to describe relativistic 
effects of gravitational sources such as the Earth or the Sun. In the following, we, 
therefore, restrict our considerations, concerning the detection of the Lense-Thirring 
field of the Earth, to the post-Newtonian limit (WeT << 1) of the post-Schwarzschild 
approximation. 
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3. The Experiment 

Let us now examine the possibility of detecting the Lense-Thirring field of the 
Earth by measuring the gravity gradient along the orbit of an artificial satellite. For 
this purpose, we proceed with a more specific description of the relativistic effect 
in question. 

It follows from the calculation of the (symmetric) tidal matrix K = (Kij) 
(for the linearized Kerr metric 16) that  the leading contribution F LT of the Lense- 
Thirring field of the central body to the gravity gradient I' along the circular 
geodesic orbit has the form 

F LT = - 2  (K12n ln  2 + K23n2n 3) , (9) 

and can be written explicitely 7's as 

F LT = .A(~-) [no + al sin 2wT + a2 cos 2wTl , (10) 

where the (increasing) amplitude A(7) is given by 23 

9 . G 2 J M  
(11) 

cf. Eq. (8). The  (constant) coefficients no, al, and a2 are of order unity and depend 
on the angle ~/0 and on the direction cosines n ~ (cf. Eq. (6)); see References 7 and 
8. An instrument that  allows the detection of very small (relative) accelerations is 
beeing developed at the University of Maryland by H.J. Paik. It is designed for a 
space mission to measure the gradient of the gravitational field of the Earth along 
a satellite orbit of low altitude with extremely high accuracy. These measurements 
would enable, e.g., ave ry  precise determination of the multipole moments of the 
Earth and would thereby improve our knowledge of the structure of the Earth. 
Paik's superconducting gradiometer allows the measurement of gravity gradients in 
three orthogonal directions, simultaneously. Each direction is realized by a linear 
channel (arm) along which a proof mass (particle T2; cf. Eq. (6)) is constrained to 
move. The proof masses are attached to mechanical springs, where the tidal forces 
acting on the masses in the direction of the corresponding gradiometer arms are 
directly measured through suitable compensating forces: The gravity gradient in 
the direction of each gradiometer axis can then be determined by the compensating 
forces and the equilibrium separation of the proof masses from the origin (particle 
T1) of the orthogonal frame formed by the three gradiometer arms; for details see, 
e.g., Reference 24 and also 10. The intrinsic noise level for Paik's superconducting 
gravity gradiometer has now been reduced to ~ I O - 3 E H z - 1 / 2 ,  corresponding to 

10-6E for an integration time of 1 month. 25 (1E = 1 EStvSs = lO-9sec -2 . )  It 
follows from Eq. (11) that,  for a circular polar orbit (a = ~r/2) of 600 k m  altitude, 
the amplitude A(T) of the gravitomagnetic contribution F LT of the Earth to the 
gravity gradient will increase to ~ 2 x 10-4E after 1 month; 7,s cf. also References 
6, 9, and 11-13. Thus, this relativistic effect could be detected, in principle, by 
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means of Paik's present gradiometer 25 already after ~ 1 month with a signal-to- 
noise ration of 100. 

The experiment to detect the gravitomagnetic tidal effect, essentially requires 
a high-sensitive gravity gradiometer in combination with precise gyroscopes both 
placed in a drag-free satellite orbiting the Earth. A drag-free satellite will be nec- 
essary to guarantee that, at low altitude above the Earth, the system is falhng 
(almost) freely along the orbit (geodesic motion). To measure the secular effect 
described by Equations (10) and (11), the orientation of the gradiometer axes has 
to be kept constant relative to the spin axes of the gyroscopes (local inertial frame') 
during the experiment. In other words, the gradiometer arms will be guided iner- 
tially along the orbit. 

A modified experiment, in which the gyroscopes are replaced by telescopes, 
has also been discussed. 1° In that  experiment the orientation of the gradiometer 
axes would be kept constant relative to the sidereal frame) s The results in Ref. 10 
show that,  along a polar circular orbit of low altitude, the contribution of the Lense- 
Thirring field of the Earth to the gravity gradient (measured in sidereal orientation) 
will be periodic with frequency 2w and will show a (constant) amplitude of ~-. 10-TE. 
In the present paper, we will not consider this version of the experiment in further 
detail. We, instead, refer the reader to the analyses provided in Ref. 10. 

The entire gradient of the gravitational field of the Earth is greatly dominated 
by the Newtonian background, which possesses an amplitude of order w 2 corre- 
sponding to g 103E, for an orbit of low altitude. It would therefore be desirable to 
find a method to isolate the gravitomagnetic contribution, described by Eq. (10), 
from these dominant parts. For this purpose, let us consider a specific (constant) 
orientation of the orthogonal gradiometer axes relative to the (parallel transported) 
spin axes of the gyroscopes, representing the co-moving, locally inertial frame of 
reference, {Ai}. Imagine, e.g., two gradiometer axes, A1 and A2, lying in the plane 
spanned by the orthogonal unit vectors A2 and A3. (The initial orientation of 
the spacelike orthonormal frame {Ai} relative to the geodesic orbit was described 
above.) Furthermore,  assume that each of these gradiometer arms, A1 and A2, 
forms an angle of 450 with the As-axis; i.e., one arm, say A1, points in the direction 
of (A2 + A3), the other, A2, in the direction of (As - A3). (The remaining arm, of 
course, then points in the direction of A1, or -A1.) Let n = (n i) and fi = (fii) 
be (orthogonal) unit 3-vectors pointing in the (As + A3)-direction (A1) and in the 
(A~. -A3)-direction (As), respectively. The (constant) components s2 n i and ~i are 
the direction cosines of n and fi measured with respect to the basis {Ai}, cf. Eq. 
(6), and can be written as 

1 n ~ = n 2 (12) nl =0, ?'L2 : - ~ ,  

~) = 0 ,  f i 2=n  2, f i 3 = _ n  s. (13) 

From the general expression, Eq. (6), it now follows that the gravity gradients F 
- -  in the direction of n (axis A1) - -  and I" - -  in the direction of fi (axis A2)-- take 
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the simple form 

r=- 1 (K 2 + K33 + 2K23) , (14) 

( K .  + K33 - 2K23) . (15) 

By subtracting these two gradiometer "signals" one gets 26 

- - r = 2K23. (16) 

(Quite similar results are obtained when rotating the arms AI and A2 about the 
Al-axis by 90 °, 180 °, or 270°.) If we place the gradiometer arms AI and A2 (with 
45°-orientation) in the plane spanned by AI and A2, the corresponding signal dif- 
ference F will be given by 2K12, and in the (AI, A3)-plane by 2K13. Thus, a direct 
measurement of the off-diagonal elements of the tidal matrix K will be possible by 
applying such a signal-subtraction method. As was mentioned above, the matrix 
dements/(12 and K23 are directly proportional to the proper angular momentum 
J of the central body (Earth) and are, thereby, of purely gravitomagnetic origin; cf. 
Eq. (9). The explicit evaluation of Eq. (16) yields 

~ A(~') [sin y0 -sin(2wT + 7/o)] , (17) 

where the increasing amplitude A(~') is given by Eq. (11). (The right-hand side of 
Eq. (17) is equal to the leading contribution to F, which is secular.) When placing 
the gradiometer axes A1 and A2 correspondingly in the (A1, A2)-plane, the isolated 
gravitomagnetic signal F is given by 2K1~. (~ 2/(23 cot 03"/'). 

Since the Earth is not completely spherically symmetric, the quadrupole mo- 
ment (oblateness) and higher moments will contribute to the gravity gradient. For 
instance, the quadrupole moment will also affect the off-diagonal elements of the 
tidal matrix; see, e.g., Ref. 14. Preliminary investigations indicate that these off- 
diagonal contributions of the quadrupole moment will vanish along a polar Earth's 
orbit (a = ~), for which the gravitomagnetic effect just reaches its maximum; 
cf. Equations (11) and (17). More detailed studies of the influences of the central 
body's multipole moments on the gravity gradient will be left to future publications. 

It follows from our preliminary error analysis for the gradiometer experiment 
in question that there is one major source of error. Namely, the deviation of the 
motion of the gyroscopes' spin axes from ideal parallel-transport along the orbit. 
The deviations are caused by small perturbing torques. Let us examine the influence 
of this dr/ft of gyroscopes on the isolated gravitomagnetic signal, F, more closely. 
For this purpose, we can restrict our considerations, without loss of generality, to 
the specific case of orientation of the gradiometer axes treated above (Equations 
(12)-(17)). A small drift of gyroscopes can be described by a time-dependent 
infinitesimal rotation of the local inertial frame of reference {A{}. The resulting 
slowly rotating frame {A~} is then given by 22 
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where the elements D~j (= Di d) of the infinitesimal rotation matrix D can be 
expressed as Dij  = 5ij + Iij with Iij = - I j i  and [hjl << 1. In this rotating frame, 
the isolated gravitomagnetic signal, F ' ,  takes the form 

~' = 2 [DKDT]23 = F + 6F, (19) 

where the perturbation 5F of F, which is due to the drift of the gyroscopes, can be 
written as 

5r = - 2  [I12K N + I23 ( g  N - KN)] • (20) 

(Here it is sufficient to consider only that  part of 6r, which results from the leading, 
Newtonian, contribution 27 K N to the tidal matrix K.)  If we write the relative error 
of I' as 

-ff (21) 

([4[ << 1), we can determine the (infinitesimal) quantities/12 and I23 from Eq. (20) 
by means of Equations (11) and (17). One has 

3 GJ  
I12 = - ~ec-~ra T sin a COS ~/0, (22) 

/23 = eI12 tan 7/0. (23) 

Hence, the permissible drift-rate of gyroscopes, at a given value of c, can be de- 
scribed by the (constant) frequency 2s 

V \  dr  ] + \--d~T ] = 2Hc-Vr-3r3 s ina" (24) 

Thus, it follows that,  if we tolorate an error (]6F/P[) of 1%, i.e., [el = 1/100, a 
drift-rate 6f~ of - 1.3 milliarcsec/yr would be allowed, for a polar circular Earth 's  
orbit of 600 k m  altitude; see also Ref. 13. (Such a circular orbit will be chosen for 
the planned Stanford Gyroscope Experiment (GPB).) It should be noted that  the 
drift-rate of the present Stanford gyroscopes amounts to - 0.06 milliarcsec/yr (for 
a 10-119 drag-free satellite) 29 and is, thereby, already smaller than the tolerable 
value for 6f~ (at [~fF/r] = 1%) by a factor of -~ 20. 

The treatment of additional errors, e.g., the influence of small deviations of the 
satellite from ideal geodesic motion (free fall) on the gravitomaguetic signal F, will 
be the subject of further publications) ° 

In conclusion, the gradiometer experiment described in the present paper could 
open the possibility of detecting the Lense-Thirring field of the Earth with sufficient 
accuracy after only a few weeks by already existing instruments. 
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The International Atomic Time and the PTB's Clocks 
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B r a u n s c h w e i g  

1. Time Scales 

A time scale serves the purpose of giving a date to events by associating 

numerical values to them. It is characterized by an arbitrarily fixed origin and a 

scale unit which - in the cases of interest to us - is the second of the International 

System (SI} of Units. 

To realize such scales, time depending physical phenomena are used whose 

evolution in time can be followed on the basis of measurements and whose laws 

are known. Archaeologists, for example, establish dates with reference to the 

radioactive decay, whereas periodical processes are preferred in the field of 

technology. These were formerly the processes of celestial mechanics which were 

considered particularly regular; we know today that atomic processes are superior 

in this respect. 

1.1 Astronomical Time Scales 
1.1.1 Universal Time UT and Zonal Time 

The time in normal life is determined by the revolution of moon and earth round 

the sun. Days, months and years fol low one another to form a natural time scale. 

From ancient times the astronomers have therefore been responsible for the 

determination of the time. However, if one looks more closely at the time intervals 

obtained by observing the stars, it can be seen that their length varies and that 

they are therefore only conditionally suitable for the establishment of a time scale. 

if, for example, the time of 12 o'clock is associated to the moment when the sun 

is at its zenith as it is observed every day from a fixed point on earth, so-called 

true solar days are obtained whose lengths deviate from the mean length of a day 

by up to + 30 s in the course of a year. In a time scale based on the true sun, 

these differences in the length of individual days add up to seasonal variations of 

+ 15 min. These irregularities are due to the earth's elliptic orbit and to its axis of 

rotation being inclined to the plane o f  its ecliptic. 



142 

If the variations are averaged with the aid of the well-known relations, a mean 

solar day and a mean solar time is obtained. Until 1956, the second was defined 

as the 86 400th part of the mean solar day. 

The mean solar time referred to the meridian of Greenwich is called Universal 

Time, UT, previously also Greenwich Mean Time. The so-called zonal times result 

from the Universal Time in that full hours are added or deducted. The zonal times 

are therefore identical with the mean solar times of certain selected meridians. The 

relevant Act of the German Reich of 1893, which was applicable until the 1978 

Time Act entered into force, therefore stipulated the following: "The legal time is 

the mean solar time of the fifteenth meridian east of Greenwich." 

1.1.2 Corrected Universal Time UT1 and UT2 

More exact observations of the sky with its fixed stars show that the earth's axis 

of rotation varies inside the planet by some arc seconds. This so-called polar 

motion has a period of about 14 months, subject to irregular seasonal changes. 

Depending on where he is standing, the observing astronomer is given the 

deceptive impression of a relative change of the earth's rotational frequency 

(+ 10 -8 in these latitudes). This influence on the Universal Time was taken into 

account in 1956, leading to the introduction of the corrected Universal Time, UT1. 

It is proportional to the earth's angle of rotation and is to date being used for 

navigation purposes. 

In the years 1934/35, physicists of the Physikalisch-Technische Reichsanstalt 

succeeded in demonstrating seasonal variations in the earth's rotation with the aid 

of quartz clocks [1] (Fig. 1). This phenomenon is caused by periodical changes of 

the earth's moment of inertia (heating of the air above the continents). When 

these variations are allowed for by suitable corrections, a still better Universal 

Time, UT2, is obtained which is, however, hardly used any longer. It is the most 

uniform time scale which can be derived from the earth's rotation. The difference 

between UT1 and UT2 amounts to up to + 30 ms in the course of a year. 

In addition to the irregularities already referred to, there are other influences which 

have a disturbing effect on the earth's movement. Asymmetrical forces from the 

moon and the sun act on our oblate planet. The earth then behaves like a 

gyroscope. Its axis of rotation slowly rotates about the perpendicular to the 
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Long term variations Adm of the mean solar day determined with the aid 

of astronomical observations, the dashed line indicates the influence of 

tidal friction. 

ecliptic. A full period of this so-called precession takes 26 000 years. The earth is 

also subject to smaller forces from the other planets, which change constantly. 

Combined with the effects of slow changes in the moment of inertia of our planet, 

long-term variations of the earth's rotational frequency result. The astronomers 

have observed this phenomenon for centuries by comparing the length of the 

mean solar days with other periodical processes in celestial mechanics (Fig. 2). 

Passages of planets and the revolution of our moon or of the Jovian moons were 

used for this purpose [2]. 

The large variations shown in Fig. 2 hide a slow but constant decrease in the 

earth's rotational frequency due to the friction of the tides. Coral fossils from 

Devon, on which daily and annual rings can be counted, have shown, however, 

that 400 million years ago the year had 400 days [3]. All this demonstrates that 

the Universal Time derived from the earth's rotational movement is not a uniform 
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time scale. Alone as a result of the tidal friction, the Universal Time and an ideal, 

uniform time scale drift apart by one hour in 1 000 years. 

To become independent of the irregularities of the earth's rate of rotation, the 

Ephemeris Time, ET, with the ephemeris second as the fundamental unit was 

introduced in 1956. Here the determination of the time was deduced from the 

revolution of the earth round the sun and no longer from its daily rotation on its 

own axis. The ephemeris second was defined as a certain fraction of the tropical 

year 1900. In practice the ephemeris second proved to be as unsuitable as was 

the second derived from the mean solar day. 

1.1.3 Pulsars 

The question of whether pulsars can be used as time standards has recently been 

brought up for discussion [4]. In general, pulsars are isolated neutron stars which 

remain after the gravitational collapse of a star. Their periods of rotation range 

between 103 s and 10 -3 s. 

Radio radiation is released above the magnetic poles, by a mechanism which is still 

not fully understood. Pulses are observed because the magnetic dipole axis and 

the axis of rotation include a certain angle. The pulsar thus acts like the beacon 

light of a lighthouse, whose radiation sweeps us in the rhythm of its period of 

rotation (Fig. 3). However, a time scale derived from these pulses has the 

following characteristic features: 

o) 

Fig. 3: The radiation of a pulsar is aligned with its magnetic dipole axis. 
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- The pulses are affected by noise. Even the ms-pulses of the neutron stars 

rotating at highest speed can be picked up only wi th an uncertainty of some 

100 ns. This leads to very long averaging times when a clock on the earth is to 

be synchronized with their aid. 

- The arrival times of the pulses forming the time markers of such a scale depend 

on the earth's position during its revolution round the sun. To reach an 

uncertainty of 100 ns, the earth's orbit must be known correct to 30 m. It has, 

however, been pointed out at the beginning that the earth's path is subject to 

complex influences from the planetary constellation. 

- The pulse frequencies of individual neutron stars show individual drifts. This 

phenomenon has to do with the radiated power which, in the last analysis, is fed 

by a decrease of the rotational energy. In a time scale established on such a 

basis, the drift of the pulse frequency must be calibrated by means of a superior 

standard, i.e. an atomic clock. 

1.2  Atomic  Time Scales 

Atomic time scales differ from astronomical time scales in an essential aspect. The 

latter are derived from a single time standard, an astronomical object whose 

signals are accessible to everybody. In contrast to this, atomic time scales are 

obtained by forming the average of a great number of clocks. It is true that here, 

too, a particular, exceptionally good clock might serve as a maserclock; however, 

this will probably never happen, be it only for political reasons. 

1.2 .1  Time Comparisons 

International time comparisons in the ns range are a prerequisite for the calculation 

of a mean time scale on the basis of the readings of many clocks installed all over 

the world. Three procedures are essentially followed for this pupose: 

- Transportable atomic clock: The stationary clocks of two institutes are 

successively placed side by side with a travelling clock and the intervals 

between the second pulses are measured by means of a time interval counter. 

Various stations are usually included in such comparisons. The uncertainty 

attained depends on the stability of the travelling clock and on the duration of 
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Fig. 4a: One-way time comparison: AA_ B time difference between the clock at 

station A and B; tAS, tBS arrival times of a selected signal of transmitter S; 
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Fig. 4b: Two-way time comparison: tAB, tBA time intervals between transmitted 

and received second pulses. 

the journey. It varies between 10 ns and some 100 ns. The relativistic time 

shifts of the travelling clock must be corrected; in the case of air journeys they 

may amount to some 100 ns. 

- 0 n e - w a y  time comparisons: The procedure is based on the reception of radio 

signals (Fig. 4a). Prerequisite is the exact knowledge of the distances, as the 

propagation times of the signals, T A and TB, enter into the result. The time 

difference of the clocks can be calculated from the arrival times tAS and tBS of a 

selected signal read on both clocks. 
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In the North American and European region, preference was given in the past to 

signals of the LORAN C navigation system installed on the earth. Uncertainties 

of about 100 ns were attained in the time comparisons, which were essentially 

due to disturbing interferences between the ground wave travelling on the 

earth's surface and the sky wave reflected by the ionosphere. 

Today better results are obtained using signals from satellites in the case of 

which such interferences cannot occur. As the locations of satellites can be 

determined with sufficient accuracy, the propagation times can be calculated as 

well. Uncertainties of about 20 ns are at present being attained with the aid of 

the GPS satellites [5]. This progress is also due to an improved signalling 

technique which makes use of pseudorandom sequences and autocorrelation 

techniques. 

- T w o - w a y  t ime compar isons:  Via a satellite which acts like a mirror, each of the 

stations transmits its second pulses to the other station (Fig. 4b). On each side, 

the time interval between the second transmitted by the respective station and 

the second pulse received from the other station is measured. When the time 

difference between the clocks is calculated, the propagation times, which are 

the same in both directions, cancel out. Strictly speaking, this is, however, only 

true of geometrical paths. In the electronics of the stations involved different 

delay times of the signals transmitted and received may occur, which must be 

determined separately. In spite of this, uncertainties of 1 ns are achieved by this 

method. 

1.2.2 The International Atomic Time, TAI 

The International Atomic Time is defined as follows: Its origin corresponds with 

January 1, 1958; 0.00 Universal Time. The SI second realized at sea level has 

been fixed as the scale unit. TAI therefore is a coordinate time scale on our geoid 

in rotation. 

Approximately 200 atomic clocks in about 20 time institutes contribute at present 

to the formation of TAI. At ten-day intervals, the time differences of the clocks are 

measured using the procedures referred to before, and the results communicated 

to the Bureau International des Poids et Mesures (BIPM), Paris. At the BIPM, TAI is 

calculated by a method which has already been changed several times. Approxi- 

mately two months later each participant in these clock comparisons is informed 
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to which extent his clocks differ from TAI. He can then subsequently convert 

dates established in the time scale of one of his clocks to the more exact TAI. 

For the calculation of TAI, different weight is given to the clocks involved. This 

weight is independent of the clock's frequency difference with respect to TAI; it 

solely depends on the clock's stability observed in the past year in comparison 

with TAI. The time scale calculated in this way therefore excels by a particular 

stability. However, it has not yet the correct scale unit, the Sl second, as it is 

mainly based on commercial Cs clocks which are affected by systematic errors. 

Comparisons with the primary clocks (see below) of great metrological institutes 

show that the second of the so-called free atomic time scale obtained from the 

averaging process is too great by more than 10 -12. Only after a suitable steering is 

TAI obtained from the free atomic time scale. 
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In this context the PTB's clocks are of special importance. In these primary clocks, 

all frequency-shift ing effects are taken into account by appropriate corrections so 

that the second, which is finally realized, has the defined length up to a very small 

limit of uncertainty [6]. Details will be given in the next section. There are only a 

few such primary clocks in the world and not all of them are operated continually. 

For approximately four years, the BIPM has even been solely dependent on the 

results furnished by the PTB's clocks, CS1 and CS2. 

Fig. 5 is intended to give an impression of the long term stability of atomic time 

scales. The differences between TAI and the independent time scales of some 

institutes reflect, that usually commercial clocks with uncontrolled systematic 

frequency departures are involved. The good agreement of the PTB time with TAI 

demonstrates the great influence of the PTB clocks in the steering of TAI. 

2. Primary Atomic Clocks 

Since 1967 the second of the International System of Units has been defined as 

follows: 

The second is the duration of 9 192 631 770 periods of the 

radiation corresponding to the transition between the two hyperfine 

levels of the ground state of the cesium-133 atom. 

The definition does not refer to a certain velocity or a certain gravitational 

potential.As a consequence, depending on the conditions under which it is 

realized, the SI second appears to differ in length. This was taken into 

consideration when the International Atomic Time, TAI, was introduced which has 

been defined as a coordinate time scale on our geoid. 

The definition of the second is put into practice by means of so-called Cs atomic 

clocks. As these clocks are subject to a number of influences which affect their 

rate or frequency, a distinction is made between the commercial standards where 

the amount of these influences is not known, and the primary clocks where the 

frequency errors are determined by measurement of parameters and then 

corrected, and where the limit of residual errors is given by an uncertainty 

estimation. Such primary clocks - in particular those of the PTB - wil l be dealt with 

in the following. 
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2.1 Principle of a Cs Clock 

In order to show the limits of a time standard, the principle of a Cs clock (Fig. 6) 

shall be explained first. 

Cesium is heated in an oven O which the atoms leave as divergent beam through 

a small opening. The solid dots and open dots mark atoms at the two energy 

levels referred to in the definition of the second. As the levels are close together, 

they are equally populated. 

The atoms first reach the state selecting magnet M1 whose inhomogeneous field 

influences their path. Atoms at the upper energy level have a negative magnetic 

moment. They are deflected towards the axis and continue on their path as 

parallel beam when the velocity is appropriate. Atoms at the lower energy level 

with positive magnetic moment are expelled from the beam. 

Inside the cavity our atoms cross an electromagnetic field whose frequency can be 

tuned with the help of the voltage controlled oscillator VCO. If this frequency 

corresponds to the transition frequency fo of the cesium, the atoms are stimulated 

O M1 R M2 D 

%'-I s 

Fig. 6: 

L N'fvco 

~, fvco 

1 

1 

fo N'fvco 

I 

Principle of a Cs clock: O oven; M1, M2 state selecting magnets; R 

microwave cavity; D detector; VCO voltage controlled oscillator. 
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Fig. 7: Ramsey cavity or separated field exposure: the dashed line represent 

magnetic field lines of the standing wave pattern. 

to change their energy level. This is indicated by the variation from solid to open 

dots inside the cavity. The atoms then reach the state selecting magnet M2. 

Having made the transition, they are defocussed, thus making the detector signal 

S a minimum. S can therefore be used to tie the frequency fed into the cavity to 

the atomic resonance fo" 

For clarity, closer details of the microwave cavity must be given. It is in fact 

possible to expose the atoms to a single extended radiation field according to 

Fig. 6; however, different oscillation modes or phase curvatures as they occur in 

an extended cavity would disturb the clock's function. A more ideal field 

distribution can be realized inside a waveguide. Norman F. Ramsey developped the 

method of the "separated field exposure" (Nobel Prize for physics in 1989) which 

makes use of this advantage. Fig. 7 shows the Ramsey resonator, a U-shaped 

waveguide, with its standing wave field in the interior. The atoms which traverse 

the walls of the waveguide through bores some millimeters in diameter are 

exposed twice to the field. 
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The effect of this separated exposure can be demonstrated by a picture which 

Ramsey himself used. Instead of an atom excited by a microwave, we consider a 

car on a corrugated road. The first disturbance shakes the car which will continue 

to oscillate at its eigenfrequency on the even road section. The second 

disturbance will further intensify this oscillation if its periodic excitation occurs in 

phase with the car's oscillations. In this case the car can be seriously damaged or 

- when we return to the picture of the atoms - they can change their energy level 

under stimulated emission or absorption. Obviously the transition probability will 

reach a maximum if the microwave frequency agrees with the atoms' 

eigenfrequency and if both excitations are in phase. Additional secondary maxima 

occur if the frequency of the cavity field does not correspond to the atoms' 

eigenfrequency but is just so high that between the two exposures, the atoms can 

perform an integer number of eigenoscillations more or less. The central maximum 

to which the microwave frequency must be tuned can, however, be easily 

identified so that no ambiguities occur in the clock's operation. 

Serious consequences for the clock's operation arise when the fields in the two 

exposure regions are slightly out-of-phase. This can be caused, for example, by 

non-symmetrical feeding of the cavity or by faults in the waveguide geometry. In 

the ideal resonator with no phase difference the flying atoms always stay in phase 

with the field. No Doppler shifts will happen as everything is equivalent to an atom 

which moves parallel the wave fronts of a travelling wave. A phase difference 

between the two interaction regions, however, can be regarded as an inclination 

of the wavefronts with respect to the atomic path which results in a Doppler shift 

of the resonance frequency. 

All commercial Cs clocks are affectd by this error which may assume relative 

values of some 10 -12 . In primary clocks, its amount is determined experimentally 

by reversal of the atomic beam. As the error then changes in sign, it can be 

evaluated from the frequency comparisons with a stable reference clock. Despite 

the correction, which is applied in the PTB's primary clocks, the contribution of 

this error predominates in the uncertainty estimate. 
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2 . 2  Proper t ies  o f  Cs C locks  

2 .2 .1  Uncerta inty  

The most important property of a primary clock is its uncertainty. It describes the 

possible deviation of the clock frequency from the true value given by the 

definition of the second. In other words, the uncertainty is a measure of how well 

one has succeeded in stabilizing the tunable oscillator to the centre of the atomic 

resonance and how well all line shifting effects have been corrected. As this can, 

however, be done only with finite accuracy, a residual uncertainty remains. 

Table 1 shows the various error sources and their contributions to the uncertainty 

of the PTB's primary clocks, CSl and CS2. 

Table 1: Contributions to the relative uncertainty of 
clocks CS1 and CS2 (in 10 "14) 

phase difference of resonator 

C field 

spectral purity 

microwave power 

servo system 

relativistic Doppler effect 

CS1 CS2 

3 1 

0,3 0,5 

0,4 0,4 

0,3 0,3 

<0 ,2  <0 ,2  

0,1 0,1 

The predominant influence of the phase difference of the two interaction fields can 

be seen. The origin and the implication of the other error sources cannot be 

discussed in detail here. Worth mentioning is that the relativistic Doppler effect 

prevails in the primary clocks of most other institutes as faster atoms are made 

use of there. In general, it can be said that it will hardly be possible to reduce the 

uncertainty of the primary Cs clocks by an additional order of magnitude. After the 

predominant contribution to the uncertainty has been eliminated, one is usually 

confronted with a number of effects of approximately the same size which would 

then have to be fought against at the same time. 
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Fig. 8 shows the time difference between CS1 and CS2 adding up in the course of 

the years. The clocks' frequency difference is reflected in the curve's slope. It can 

be seen that the clocks deviate on an average by 2.5 • 10 -14. This frequency 

difference is compatible with the uncertainty estimates of Table 1. 

2 . 2 . 2  I n s t a b i l i t y  

Apart from the uncertainty, the instability is the next important characteristic of an 

atomic clock. It describes the frequency variations of the standard and determines 

the averaging time T required to obtain reproducible frequency measurement 

values. The instability is usually stated in the form of the two-sample standard 

deviation G(T), often also known by the name of Allan variance [7]. 
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Fig. 9 shows a G(T) plot of the PTB's primary clocks, CS1 and CS2. It can be seen 

that the instability still decreases up to the averaging times of 150 days reached 

now. The behaviour of a commercial Cs clock, a so-called high-performance Cs 

clock, has been plotted for comparison. An increase of O'(T) for averaging times 

which exceed a few days is evident. This points to a frequency drift, which can be 

caused by a change in one of the many parameters, which affect the clock 

operation (see table 1). 

As long as any systematic change of this kind can be neglected the instability is 

only limited by the shot noise of the atomic beam and the linewidth of the 

transition. For this case the dependence of O'(T) from the different physical 

quantities is given in Fig. 10. 

Whereas (N • T)-½ reflects the well known influence of the shot noise, the 

linewidth linearly depends upon the time of flight T of the atoms through the 

cavity including the area between the two interaction zones. 
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Dependence of the two-sample standard deviation upon shot noise and 

linewidth: S detector signal; f frequency of cavity field; T averaging time; 

N number of atoms per second, T interaction time. 

If a Cs clock of especially small instability at finite averaging times is to be 

developed, either the number N of the particles in the beam must be increased 

(oven temperature) or the time of flight T extended (longer resonator, selection of 

slower atoms). For technical reasons, unfortunately neither of these means can be 

used to achieve greater progress for classic Cs clocks [8]. 

3. New Approaches 

When 25 years ago the second was redefined on the basis of an atomic transition, 

there were good reasons to select the cesium. 

Table 2: Characteristics of Cs and consequences 

heavy atoms and 
low melting point 

large differences in 
the magnetic moments 

low ionization 
energy 

> beam of slow atoms 

- - >  magnetic state selection 

~ >  efficient hot wire detector 
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While the two last-named advantages are rather of a technical nature, the first one 

is of the fundamental type. Both the cavity phase difference and the relativistic 

Doppler effect cause frequency errors and thus contributions to the uncertainty, 

which decrease with decreasing velocity. In addition, the instability is reduced by 

the associated prolonged time of flight. 

All these advantages must, however, today be seen in relative terms. New 

technologies like ion trapping, laser cooling, optical pumping and optical detection 

suggest both the use of other atoms or molecules (Hg, Be, Mg, Yt, OsO 4) and 

other clock designs. The two concepts at present considered most promising will 

be briefly described in the following. 

3.1 Ion Traps 

Small ion clouds, and even individual ions, can be enclosed in a confined space in 

electromagnetic cages (Fig. 1 1 ). Such traps consist of a ring-shaped electrode and 

two caps to which a suitable voltage is applied. A distinction is made between 

radio frequency or Paul traps where this voltage consists of d.c. and a.c. 

components, and Penning traps which require a static magnetic field iln addition to 

a d.c. voltage. 

l+ 

;!" 
, _ ~ _  _ ~ V =  Uo+Vocosut c 

\ 

Fig. 1 1: Ion traps are possible to work in one of two ways: V o 
trap), B & O, V o = O (Penning trap). 

=~ O, B = O (Paul 
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The residual movement of the ions around the trap centre is reduced with the aid 

of so-called laser cooling. For this purpose, the trap centre is exposed to a laser 

radiation whose frequency is red-shifted in relation to a transition in the ion. Due 

to the Doppler effect, only ions flying towards the beam are able to absorb 

photons. Each time a momentum is transmitted in the direction of the beam, while 

emission takes place statistically in any direction so that a slowing-down of the 

ions follows as the net effect. 

Very slow ions are then obtained on which long times of interaction wi th fields 

can be realized [9]. As an example, the clock operation of an ion trap with 

ytterbium will be explained. 

Fig. 12 shows the term scheme of 171yb+. As in the case of cesium, the 

hyperfine splitting of the ground state, which is here 12.6 GHz, is used as clock 

transition. Tuning of a 12.6GHz microwave to this transition is achieved in 

intervals. To begin with, the ions are cooled using radiation in the blue spectral 

region, which belongs to a strong transition between the S and the P state. Then 

the state selection is achieved by means of the same radiation which, for this 

purpose, is tuned to a transition between a level of the P state and the upper 

hyperfine level of the ground state (F = 1). As a result, atoms are continually 

pumped to the P level from which they fall back again into the two hyperfine 
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levels of the ground state. After a short time the upper level is empty, laser light is 

no longer absorbed and the fluorescence radiation at 369 nm extinguishes. Now 

the microwave is switched on which again populates the upper hyperfine level of 

the ground state if its frequency is correctly tuned. As a result absorption takes 

place again and the fluorescence radiation reappears. Its intensity can therefore be 

made use of to tune the microwave to the clock transition. 

The decay of the P state, however, does not always lead to the ground state. 

With a branching ratio of 1:300 the ions can escape to the metastable D state, 

where they are lost for the clock operation due to the long livetime of this state. 

Therefore, an additional laser with a wavelength of 2.4 pm is required for pumping 

the ions back to the clock experiment. 

Higher frequencies - such as the 435 nm transition - cannot yet be made use of 

for a clock. It is not yet possible to count the cycles of an optical transition. 

Nevertheless, research is going on in this field mainly for two reasons: the 

instability is inversely proportional to the frequency (see Fig. 10) and a greater 

distance of the energy levels in the term scheme makes the associated frequency 

less sensitive to shifts of these levels due to electromagnetic fields (Zeeman or 

Stark effect). 

3.2 Cs Fountain Clock 

The new techniques can also be made use of to improve the classic Cs clocks. 

Work is at present in progress on the so-called fountain clocks (Fig. 13). 

In this case a cloud of neutral Cs atoms is captured in a kind of molasses by 

exposure to laser light from six directions. The laser frequencies are slightly red- 

shifted with respect to an atomic resonance at 850 nm. As a result, atoms trying 

to escape from the molasses get into resonance with one of the beams on account 

of the Doppler effect, and they are pushed back by absorbed photons. 

Then, by properly changing the frequencies of the vertical beams, a moving 

molasses is created that drags the atoms upwards. When they have reached a 

velocity of a few m/s all molasses lasers are switched off and the state selection is 

achieved by a properly tuned laser pulse of a few ms. On their way up and down 

the launched atoms interact twice with the field of a microwave cavity, exactly as 

they do in a normal Cs clock. The microwave transition or the correct frequency of 
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Fig. 13" Cs fountain clock. 
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the cavity field is checked by measuring the induced fluorescence of the atoms 

when they cross a probe beam on their way down. 

Although such a fountain clock seems to be very complicated, its feasibility has 

already been demonstraded [10] and it may be expected that its realization will 

improve the accuracy and the instability of Cs clocks by another order of 

magnitude. Problems related to the cavity phase difference of the classic Ramsey 

resonator are avoided as the atoms interact twice with the same field and the 

generation of slow atoms with tong interaction times guarantees a narrow 

linewidth of the microwave transition. 
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Abstract:  An overview is given of the gravity-wave emission from astrophysi- 
cal sources. The detectability of gravity-wave signals on Earth and in space is 
discussed. 

1 I n t r o d u c t i o n  

Albert Einstein predicted gravitational waves shortly after his final formu- 
lation of general relativity: In 1916, within linearized approximation, Ein- 
stein discussed the generation and propagation of gravitational waves, and 
in 1918 he derived his famous quadrupole formula for the gravitational en- 
ergy emission from non-self-gravitating systems (only in 1941, L. Landau 
and E. Lifshitz generalized this formula to weakly self-gravitating systems). 
It took then about 40 years before in particular through the work by Her- 
mann Bondi the physical reality of gravitational waves became evident: In 
1957 Bondi devised a primitive detector for gravitational waves. Joseph 
Weber then started the later world-wide activity in the search for cosmic 
gravitational waves (Weber 1960). 

The first who gave mathematical expressions for cosmic gravitational 
waves from realistic sources were Peters and Mathews (1963). They worked 
out the gravity-wave emission from Newtonian binary star systems in 
bounded Keplerian motion. Gravitational waveforms emitted by test bod- 
ies falling radially into a Schwarzschild black hole were given for the first 
time by Davis, Ruffini, and Tiomno (1972). And the first gravity-wave sig- 
nals from quasi-realistic models of collapsing stars (collapse of homogeneous 
ellipsoids) were obtained by Saenz and Shapiro (1978). 

Our most advanced knowledge of gravity-wave signals from astrophysical 
sources will be the subject of the present article. For a rather exhaustive 
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account of the gravity-wave research, theoretically and experimentally, up 
to the year 1986, the reader is referred to the review by Kip Thorne (1987). 

By the year 1992, the existence of gravitational waves has been revealed 
with high precision. Arrival-time measurements of the radio signals from 
the binary pulsar PSR 1913+16, running since 1974, show up an orbital- 
motion decay consistent with the gravity-wave emission according to general 
relativity with an accuracy better than 0.5% (Taylor et al. 1992). 

2 G r a v i t a t i o n a l  W a v e s  

General relativity tells us that gravitational waves are ripples in the geom- 
etry of spacetime which propagate with the speed of light. They have two 
independent degrees of freedom which live in the plane orthogonal to the 
propagation direction. For the description of the waves on Earth where the 
gravitational field is weak, it is sufficient to treat the waves as ripples in 
Minkowski space. 

Let U~- = diagonal(- ,  +, +, +), with #, u = 0, 1,2, 3, be the Minkowski 
T T  metric and let hij , with z,j = 1,2,3, denote the gravity-wave field (h~ T is 

a transversal and traceless symmetric 3-tensor which, for each component, 
fulfils the usual wave equation in Minkowski space), then the metric g~,, 
of spacetime, on Earth, takes the form g00 = - 1  + small non-propagating 
terms, goi = small non-propagating terms, gij = ~i j  + h~T+ small non- 
propagating terms. The two "linear" polarization states of a gravitational 
wave are usually denoted by h+ ("plus"-polarization) and hx ("cross"- 
polarization). Their orientations enclose an angle by 45 ° . In spherical polar 
coordinates (0 and ¢), centered at the source of the wave, h+ = hoo = - h ¢ ¢  
and h x = hog, = h¢o hold. 

The influence gravitational waves have on gravity-wave detectors results 
from the solutions of the'general covariant detector equations of motion. For 
laserinterferometric gravity-wave detectors, the covariant mirror and the co- 
variant light-ray equations of motion have to be solved. These problems are 
easiest treated in the coordinate system x i to which the metric coefficients, 
given above, belong. In this coordinate system, the mirrors, treated as free 
test masses, remain at rest when a gravitational wave passes through, and 
the influence of the gravitational wave onto the laser light results from the 
solution of the light-ray equations i.e. the equation 0 = g~,.dx#4x ", es- 
sentially, with the simple boundary condition of fixed 3-space coordinates. 
In the ease of bar detectors the influence of the wave is best described 
in terms of the tidal force the bar experiences during the passage of the 
wave. Under the assumption that the reduced wavelength of the gravita- 
tional wave is large compared to the extension of the bar, the potential of 
this force reads (1/2)c2RoiojXiX j where the curvature tensor (Pdemalm 
tensor) R#~,o~ is related with the second time derivative of the wave field 
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through Roioj = - - (1 /2)c-2hT~, .  The coordinates X i are different from the 

coordinates x i used above. They refer to an orthonormal basis of vectors in 
the mass-center of the bar, i.e. they are geometrical objects. In this coor- 
dinate system, free test masses do not remain at rest when a gravitational 
wave passes through and, for laserinterferometric gravity-wave detectors, the 
equations of motion for the light rays, now in Minkowski space in leading 
approximation, have to be solved under time-dependent boundary condi- 
tions. The relation between the two coordinate systems in question, (t, x i) 
and (T, X i ) ,  reads, xi = X i -  ( 1 / 2 ) h T T X  j and t =  T - c - 2 ( 1 / 4 ) h r r ,  t x i x J .  

Hereof the relative elongation of two free test masses at the positions X i 
and X i + L i is easily deduced. It holds, dL ~ = (1 /2 )hTTL j. In Fig.1 of 
the contribution by Danzmann et al. (these proceedings), the action of the 
plus-polarization is shown. For further details see, e.g. Thorne (1983). 

T T  The gravity-wave field, hij , can be characterized by mass- and current- 
(or spin-) radiative multipole moments, respectively time derivatives of them 
(/-th time derivative for the 21-pole moments), starting with the quadrupole 
moments (e.g. see Thorne 1980). Usually, the quadrupole contribution is the 
most important  one. In a slow-motion framework, the radiative quadrupole 
moments are known as functionMs of the source variables up to the first 
post-Newtonian approximation (Blanchet and Damour 1989; Blanchet et 
al. 1990; Damour and Iyer 1991). To leading order, the radiative moments 
are identical with the corresponding source moments in the Newtonian the- 
ory. For test bodies failing into non-rotating or rotating black holes, sim- 
ple uncoupled linear differential equations (Regge-Wheeler equation, Zerilli 
equation, Teukolsky equation) relate the source multipole moments with 
the radiative multipole moments. With the exception of black-hole collapse 
and black-hole collision, all simulations referred to in the present article are 
based on the concepts and structures just mentioned. 

3 B u r s t  S o u r c e s  

The most important burst sources for gravitationM waves are (1) the col- 
lapse of iron stellar cores to neutron stars, (2) the collapse of compact stars 
to black holes, (3) the coalescence of neutron stars and/or  black holes, and 
(4) the fall of stars or small black holes into supermassive black holes. 
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3.1 Col lapse  to  N e u t r o n  Stars 

The collapse of iron stellar cores to neutron stars is very likely the trig- 
ger mechanism of Type II supernova explosions. This mechanism is one of 
the most ambitiously investigated processes in astrophysics (Woosley and 
Weaver 1986). However, in spite of big efforts, the underlying dynamics is 
still not fully understood. Also collapse simulations with rotation were not 
able to solve the problem (Miiller and Hillebrandt 1981, M5nchmeyer and 
Miiller 1989). The shock wave which propagates through the outer core 
still turns into an accretion shock without being able to heat and to emit 
the envelope. That  the model calculations nevertheless show some realis- 
tic features stems from the Kamiokande and Irvine-Michigan-Brookhaven 
neutrino events of the supernova 1987A which are in accord with the theo- 
retical predictions. Thus one may expect that also the gravitational waves, 
emitted in case of collapse simulations, are not totally unrealistic, and this 
so much the more, as the gravitational waves are mainly generated through 
the same process which also triggers the shock wave, namely the rather well 
understood bounce of the inner core. The question if the shock wave stalls 
into an accretion shock in the outer core or not depends very much on pro- 
cesses in the outer core, e.g. dissociation of the iron nuclei in the outer core 
or reviving of the shock wave through neutrino-antineutrino annihilations - 
and these processes have no influence on the gravity-wave signal. 

Stars with initial mass in the range of about 10 - 20M O end up with low 
entropy, typically 1.4Mo-stellar iron cores. The cores are supported primar- 
ily by relativistic electron degeneracy pressure and are thus only marginally 
stable against collapse. Electron capture onto free protons lowers the elec- 
tron concentration and the pressure support, and thus triggers the gravi- 
tational collapse. For stars in the mass range of about 20 - 40M® mainly 
photodesintegration of iron-peak elements to a-particles triggers the insta- 
bility. Those stars develop more massive, higher entropy iron cores before 
collapse. 

The collapse of rotationally deformed stellar cores produces gravitational 
waves. The transition from spherically symmetric, non-rotating stellar evo- 
lution calculations, the only detailed microscopic calculations performed so 
far, to rotationally deformed collapse simulations has found several treat- 
ments: (i) perturbations'superimposed on "realistic" spherically symmetric 
core collapse simulations (Turner and Wagoner 1979; Seidel and Moore 1987; 
Seidel et al. 1988), (ii) aspherical Newtonian collapse dynamics of homoge- 
neous and inhomogeneous, uniformly rotating ellipsoids with a relatively 
crude treatment of the microphysics (Novikov 1975; Shapiro 1977; Saenz 
and Shapiro 1978, 1979, 1981; Moncrief 1979; Ipser and Managan 1984), 
(iii) axisymmetric Newtonia~n collapse dynamics from initially rigidly ro- 
tating, hydrostatic equilibrium configurations, with polytropic equation of 
state with density dependent adiabatic index (Finn and Evans 1990), (iv) 
axisymmetric Newtonian collapse simulations with differentially rotating, 
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Fig. 1. Quadrupole waveforms for the Models A2 and B2. 

spherically symmetric initial conditions and explicit treatment of the mi- 
crophysics (Miiller and Hillebrandt 1981; M6nchmeyer and Miiller 1989). 
The models (i), (iii), and (iv) allow in a natural manner for shocks. For nu- 
merical reasons the shocked matter was treated by the addition of artificial 
viscosity. 

For several reasons, the gravitational waves of the models (iii) and (iv) 
seem to be the more realistic ones. Concerning models (i), the applied per- 
turbation technics do not allow for bulk motion, they are only applicable to 
slowly rotating bodies, and one has to impose rather arbitrary initial condi- 
tions; and the models (ii) suffer somewhat from their rigidity assumptions. 
In contrast herewith, the models (iii) and (iv) allow for differential rotation 
and free volume deformations, respecting the assumed axisymmetry. 
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The Fig.1 presents waveforms obtained by Miiller (1982). Shown is the 
plus-polarization state, h+; the cross-polarization state, h×, is zero in the 
actual approximation. The rotation axes of flhe stellar cores are assumed 
to lie along the z-axis; therefore the axisymmetric core dynamics does not 
depend on the azimuthal angle ~b. The amplitude AE~ is defined by rh+ = 

(15/64~)1/:A~0 ~ sin: 0. 
Initially, the models are spherically symmetric with differential rotation 

Y2(r) = const, for r < 107cm (r < 10Scm) and proportional to r - l ( r  -2) 
for r > 107cm (r > l0 s cm), and with rotational energy of 1.6 x 1049 erg 
(6.2 × 1049 erg) for the innermost 1.4M®, respectively for the Models B2 
(A2). The collapse was initiated by reducing the hydrostatic equilibrium 

, i i , i , t , i 

o . ooo  o .oo2  o .oo4  o .oo6  o .ooo  o .o l o  o . o12  

T ime  [ sec ]  

entropy by 5% (M/iller and Hillebrandt 1981). 
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Fig. 2. Quadrupole waveform. 
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Fig. 3. Energy spectrum correspond- 
ing to Fig.2. 

The Fig.2 gives the waveform obtained by Finn and Evans (1990). A+ 
is identical with h+. In Fig.3 the energy spectrum is shown (the velocity of 
light is put equal to one in the unit for the energy). 

Initially, the angular velocity is uniform, 0.16 tad sec -1, and the matter 
is in hydrostatic equilibrium. The angular momentum of the 1.4M®-stellar 
core is 2 × 1049 g c m  2 sec -1 and the "radius" amounts to 9 × 10Scm. The col- 
lapse was initiated by reducing the hydrostatic equilibrium internal energy 
by 1%. 

The presently most detailed collapse simulations of rotating stellar cores 
are the Models A, B, C, and D introduced and investigated by MSnchmeyer 
and Mfiller (1989). Not in hydrostatic equilibrium, initially, these simula- 
tions are more complete than the previous adiabatic (with the exception of 
the shock generation) simulations by Miiller and Hillebrandt (1981). These 
simulations have taken into account, equation of state data based on de- 
tailed nuclear-statistical equilibrium and Hartree-Fock calculations (Hille- 
brandt and Wolff 1985), electron and neutrino captures on free protons and 
neutrons, respcctively, neutrino trapping at densities p > 3 × 1011 g c m  -a, 



169 

and local angular momentum conservation. In particular, in contrast to the 
previous simulations, the neutrino pressure from the kinetic equilibrium of 
the weak interaction was taken into account. Inside the trapping region 
the neutrinos were assumed to  reach thermal equilibrium instantaneously. 
The hydrodynamical  equations were solved by the aid of a conservative, 
explicit numerical code of second order accurate differencing (MSnchmeyer 
and M/iller 1989). The initial collapse configurations are summarized in Ta- 
ble 1. 

Table 1. The quantities X, Z, R, ~20, E 1"4 1.0 rot, Erot, and fl are the distance from the 
core center in the equutorial plane, the distance from the equatorial plane, the 
corresponding radial distance, the central angular velocity, the rotational energy 
for the inner 1.4M® and 1.0M@, and the ratio of rotational to potential energy 
for the innermost 1.4M@, respectively. The rotational energy is growing along the 
sequence A-C-D-B. 

Model 

n/ 0 
R [108 cm] 

X [108 cm] 

Z [108 cm] 

rZo [s -1] 
[lO'  erg] 

Erl00 [1049 erg] 

A 
R ~ 

1.0 

4.0 

2 . 2  

1 . 2  

0 . 0 0 4  

B 
R ~ 

1.0 

8.0 

8.7 

4.7 

0.018 

C 
R 

0.I 

22.0 

2.9 

1.9 

0.007 

D 
X ~ Z 4 

(z2+x ~) (z4+z 4) 

1.0 

1.0 

5.5 

4.3 

2.3.  

0.010 

The four waveforms derived hereof by M6nchmeyer et al. (1991) are 
shown in Fig.4. The amplitude d2M~2/dt 2 is identical with the amplitude of 
Fig.l,  i.e. with A~02. The Fig.5 presents the energy spectra of the waveforms 
of Fig.4. 

The curves in Fig.1 axe much more noisy compared to the curves in 
the Figs.2 and 4. The main reason for this is the use of a wave extraction 
formula in case of Fig.1 which involves two numerical time differentiations. 
The Fig.2 was obtained by the performance of only one time differentiation, 
and in Fig.4 even a wave extraction formula without numerical time differ- 
entiations (Epstein 1978; Nakamura and Oohara 1989; Blancher et al. 1990) 
was applied. Like the other two extraction formulae, the latter formula has 
compactly supported integrands. At high frequencies the energy spectra of 
the waves of Fig.1 are strongly dominated by noise. They have been omit ted 
on this reason. 
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The rotational energies of the Models A, B, C, and D axe growing along 
the sequence A-C-D-B, see Table 1. The rotational energy of Model A2, 
Fig.l, lies in-between the rotational energies of the Models D and B, the 
rotational energy of Model B2 is slightly smaller than the one of Model A. 
The collapse of Model A is stopped by nuclear forces, whereas for the Models 
D and B centrifugM forces are responsable for the bounce (at bounce, Model 
D is just approaching nuclear density). The bounce of Model C has its origin 
in both forces. The Model D is exceptionM because it shows two bounces, 
separated by a large-scMe oscillation (notice Mso the special differential 
rotation pattern, initially, see Table 1). Correspondingly, the gravitational 
wave signal of Model D is different from the wave signals of M1 the other 
Models A, B , C, A2, B2, and Fig.2. The more complicated structure of 
the waveform of Model B, compared to e.g., Model A, results from the 
superposition of severM 2d-oscillation modes. 

The maximum wave amplitudes of the Models A, C, D, A2, B2, and 
Fig.2 are practicMly the same, 10 -23 for a source at a distance of 15 Mpc 
(approximate distance to the Virgo cluster). The energy in the waves, in 
units of 10-SM®c 2, amounts to 7.6, 1.2, 1.1, 0.2, and 2, for the Models A, 
C, D, B, and Fig.2, respectively. We do not quote the corresponding results 
for the Models A2 and B2 because of the mentioned noise problem. 

3.2 Collapse to Black Holes 

The collapse of compact stars to black holes, predicted by theory, besides 
the big bang, is the most interesting and spectacular process in gravity 
theory. Its verification in Nature will be of utmost importance. Gravitational 
waves can help to reveal non-sphericMly symmetric collapse to black holes 
and consequently the existence of black holes themselves. 

The gravitationM radiation emission from axisymmetric black-hole col- 
lapse has found an excellent treatment by Stark and Piran (1985), Piran and 
Stark (1986) (also see Nakarnura et al. 1987). The starting point there was 
a sphericMly symmetric, rigidly rotating compact star of radius 6GM/c 2 
with pressure deficit of 1% compared to a corresponding non-rotating star 
in hydrostatic equilibrium (M denotes the mass of the star). The assumed 
polytropic equation of state with adiabatic index two resulted in an initiM 
central density of 1.9 × 1015(M/M®) -~ g/cm 3. In units of cm, the initial 
radius was 8.8 × 105M/M®. The totM angular momentum J of the star was 
measured by the dimensionless parameter a = J c / G M  2. 

For a < 1 the collapse proceeds to black-hole configuration. The grav- 
itationM waveforms are shown in Fig.6 for the two polarization states, h+ 
and hx. The gravitational waves were taken at r = 50GM/c 2. The energy 
spectra for the a = 0.79 case axe given in Fig.7. 

The maximtm~ h+-amplitude is closely approximated by (rc2/MG) 
[h+]m~x = min(0.1a 2, 0.06), cf. Fig.6, the energy spectra peak at frequencies 
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of  7 < u < 16  M o / M  k H z ,  cf. F i g . 7 ,  a n d  the radiated e n e r g i e s  A E  behave  
as A E / M c  2 = 10  - 3  m i n ( 1 . 4 a  4, 0 . 6 ) .  T h e  c r o s s -  a n d  p l u s -  polarizat ions are 



174 

related by Ih+l > 51hx I and (AE/Mc2)+ > 10 (AE/Mc2)x. The similarity 
of the waveforms for different values of "a" is quite remarkable. It can be 
understood in terms of blmzk-hole quasi-normal modes: The gravitational 
waves are excited strongest when the size of the star, in Schwarzschild co- 
ordinates, is about 3GM/c 2 (marginally stable circular orbit for light rays), 
i.e. when the exterior metric of the star is already very nearly a black-hole 
metric. 

Several collapse calculations with dust have found very similar wave 
forms (Cunningham et al. 1978, 1979, 1980; Petrich et al. 1985). 

For a 20M® collapse to a black hole at a distance of 15 Mpc the gravita- 
tional wave amplitudes could reach values of up to 4 x 10 -21 and frequencies 
of the maxima of the energy spectra of up to 800 Hz. 

3.3 Coa le scence  of  C o m p a c t  Ob jec t s  

The coalescence of neutron stars and/or  black holes is a very strong source 
for gravitational waves. In Nature, the usually realized coalescing situation 
is from quasi-circular orbits because gravitational radiation reaction circu- 
larizes inspiraling orbits rather quickly. 

The presently most complete picture of gravitational-wave signals from 
coalescing binaries stems from Newtonian hydrodyna.Inical simulations with 
gravitational radiation damping (Oohara and Nakamura 1989, 1990; Naka- 
mura and Oohara 1989, 1991). These simulations give some insight into the 
to be expected gravitational-wave signals from coalescing neutron stars. 
Of course, as long as tidal effects are negligible, the waveforms of coalesc- 
ing neutron stars and/or  black holes are identical (Lincoln and Will 1990; 
Junker and Sch/~fer 1992). For the head-on collision of equal-mass black 
holes the reader is referred to the investigations by Smarr (1979). 

As representative example we pick up a simulation performed by Oohara 
and Nakamura (1990). The neutron stars, each with a mass of 1.49M®, were 
assumed to be in rigidly rotating equilibrium with center of mass distance 
of 15 km just when they touched each other (starting point of the hydro- 
dynamical simulation,T = 0; for the earlier evolution, T < 0, the neutron 
stars were treated as point-like bodies moving in gravitationally damped, 
quasi-circular orbits). The neutron-star matter fulfilled a polytropic equa- 
tion of state with adiabatic index two. The initial central mass densities of 
the neutron stars and the angular frequency of the binary system amounted 
to 4 × 1OXSg/cm 3 and 6.6 × 103 see -x, respectively. The coalescence was 
further driven by gravitational quadrupole radiation damping. 

For T > 0, the waveforms for the plus- and cross-polarizations are shown 
in Fig.8; for the whole process, the plus-polarization is given in Fig.9. 

The wave amplitude grows up to about 3 × 10 -21 for a source at a 
distance of 15 Mpc, and the efficiency of the gravitational energy emission 
amounts to about 4%. The frequency of the coalescing part of the wave is 
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Fig. 9. Waveform on the rotation axis at 10Mpc. 

about 7 kHz. The measurements of the frequency mad 'of the amplitude at 
some instant of time before coalescence, and of the time interval from that 
time to the time of maximum amplitude allow the direct determination of 
the distance of the coalescing binary system (Schutz 1986). 
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The Fig.10 shows the time variation of the two-arm-phase-difference, 
A~G R of the laser light for a delay line and for a Fabry-Perot type laser 
interferometric detector as caused by the wave of Fig.9, see Oohara and 
Nakamura (1990). These detectors, with effective armlength of 75 km and 
cavity length of 3 km with appropriate reflection and transmission coeffi- 
cients, are mainly sensitive to gravitational waves with frequencies at about 
1 kHz. 
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Fig. 10a. Time variation of phase difference for a delay line type detector with 
75km effective armlength. 
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Fig. 10b. Time variation of phase difference for a Fabry-Perot type detector with 
3km cavity length. 
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3.4 Fall  o f  S t a r s  or  Smal l  Black  Holes  in to  S u p e r m a s s i v e  Black  
H o l e s  

The gravity-wave-burst problem of the radial fall of stars or small black 
holes (test bodies) into non-rotating supermassive black holes has found its 
representative t reatment  by Ferrari and Ruffini (1981). The Fig . l l  shows 
the radial function of the quadrupole gravitational radiation perturbat ion 

mG /r~,~ 
(in units of - ~ V  3) for the cases 7o = 1 and 1.5, where by definition 

70 = (1 - v~/c2) -1/2 holds, voo is the speed of the Lest b o d y  (mass m)  at  
infinity. 
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Fig. 11. The radial function of the gravitational quadrupole perturbation as func- 
tion of the retarded time (t - r,/c)c3/MG, M denotes the mass of the black hole. 

In Fig.11, it is interesting to note the "memory effect" for 7o > 1, i.e. 
the difference in the initial and final values of the perturbation (see Sec.6). 
This difference has been pointed out already by Ferrari and Ruffini (1981). 
As in the case of the black-hole collapse of Sec.3.2, the waveforms can be 
understood as superpositions of black-hole quasi-normal modes (also see 
Detweiler 1979). 

The step from the head-on infall from infinity with zero initial velocity 
to the infall with non-vanishing orbital angular momentum has been made 
by Detweiler and Szedenits (1979); for a more recent treatment,  see Oohara 
(1986) where one can find also the waveform from a ring plunging into a 
Schwarzschild black hole. Detweiler and Szedenits found an enhancement 
in the total emit ted energy by a factor of 50 as the ratio J / # M  (d is the 
angular momentum,  # and M are the masses of the Lest body and the 
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supermassive black hole, respectively) increases up to 3.9. There, the total 
emitted energy, AE, takes the value AE = 0.5(#/M) 2 M c  2 and the angular 
frequency, a, peaks at about a = 0 . 3 2 c 3 / M G ,  see Fig.12. 

r 

0.0 0.2 0.4 0.6 0.8 1.0 

o-M 

Fig. 12. The energy spectrum of the gravitational radiation emitted by a body 
falling into a Schwarzschild black hole with angular momentum J. 

The special structure of the waveforms, "precursor - main-burst - ringing 
tail", first noticed by Davis et al. (1972) and later conjectured by Ruffmi 
(1978) to be valid for all collapse processes to black holes, can indeed be 
seen in all Figs.6 and 11, and even in the Figs.l, 2, 9, and in parts in Fig.4. 

The gravitational radiation from bodies moving in the gravitational field 
of rotating black holes has been calculated by Kojima (1986). Only for very 
fast-rotating black holes the results differ significantly from the non-rotating 
case. For a more detailed overview of the subjects treated in Sec. 3.4, see 
Nakamura et al. (1987). 

4 P e r i o d i c  S o u r c e s  

Important  periodic or quasi-periodic sources of gravitational waves are com- 
pact binary systems, test bodies in close orbits around black holes, and 
rotating neutron stars with nonaxial ellipticity. In the first two cases, the 
waveforms are of the type of the first part of the wave of Fig.9 (for the 
detailed structure, e.g. see Detweiler (1978) and Kojima (1986)), and in the 
latter case, of its last part. The importance of the gravity-wave emission 
for the rotational motion of newborn, rapidly rotating neutron stars has 
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been pointed out by Ostriker and Gunn (1969). The detectability of these 
gravitational waves on Earth has been investigated by Piran and Nakamura 
(1988). They conclude their detectability fl'om neutron stars in our Galaxy 
with present detectors and from neutron stars in the  Virgo cluster with 
advanced detectors. 

5 S t o c h a s t i c  S o u r c e s  

Some words should be said also to the stochastic gravity-wave background. 
The most spectacular contribution to this background are surely the grav- 
itational waves from the Plan& era of the big bang, i.e. from the time 
10-43sec after the big bang where the last scattering of the gravitons has 
taken place (el. hereto the time of last scattering of neutrinos and photons 
of about 0.1 sec and 106 years, respectively). Because of our rather crude 
knowledge of the physics of the big bang, including the inflationary epochs, 
the to be expected amplitudes and frequencies of the primordial waves at 
the present epoch are very uncertain. Important to mention is the fact that 
the interaction of the gravitational waves with the large-scale background 
curvature yields parametricly amplified states of the gravitational radiation 
field (Grishchuk 1975). The GUT and the electro-weak phase transitions in 
the early universe also contribute to the stochastic gravity-wave background 
(Vilenkin 1981; Witten 1984). For frequencies in the region N 0.06 Hz the 
stochastic gravity-wave background from white-dwarf binaries will compli- 
cate the measurement of the stochastic components mentioned above (Hils 
et al. 1990). 

6 M e m o r y  E f f e c t s  

If the initial and final amplitudes of a gravity-wave burst are different and 
constant over a time interval which is long compared to the duration of 
the burst, one speaks of a burst with memory (Braginsky and Grishchuk 
1985). Examples are the gravitational waves from the scattering of two 
bodies (e.g. see Junker and Schgfer 1992) and from the test-body head-on 
infaU into a black hole with finite velocity at infinity (Ferrari and Ruffmi 
1981), the gravity-wave emission through an asymmetric neutrino burst 
in supernova explosions (Epstein 1978), and the emission of gravitational 
waves through a burst of gravitational waves itself (Christodoulou 1991). A 
simple understanding of the memory structure comes upon from thinking 
in terms of Li~nard-Wt~chert-type gravitational potentials with particles or 
dust (in the cases of neutrino and gravity-wave bursts: null dust) as sources. 
A related understanding is given in terms of the Coulomb-type gravitational 
field of the source (Braginsky and Thorne 1987; Thorne 1992b). For a more 
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complete discussion, see Wiseman and Will (1991). The memory effects are 
low frequency effects which originate from the growth of the mean gravity- 
wave amplitude, i.e. their frequencies correspond roughly to the duration 
of the burst. In the case of coalescing neutron star binaries, the memory 
effect results simply from the addition of about 20% of the envelope of the 
inspiraling part of the wave, e.g. see Fig. 9, to the wave itself (Wiseman and 
Will 1991). 

7 Detectabi l i ty  of Gravitational Waves 

The detectors for gravitational waves can be devided into three classes 
(Thorne 1992a): Earth-based, high-frequency detectors operating in the re- 
gion 1 Hz to 10 kHz; space-based, low-frequency detectors with main sen- 
sitivity between 10-5Hz and 1 Hz; and astronomical detectors in the very 
low-frequency regime of 10-1SHz to 10-5Hz. To the first class belong bar 
and beam detectors (e.g. see Blair 1991; contributions by K. Danzmann, A. 
Riidiger, and W. Winkler in the present proceedings), to the second class, 
LAGOS, the "LAser Gravitational-wave Observatory in Space" (e.g. see 
Stebbins et al. 1989), and Doppler tracking of spacecraft (e.g. see Estabrook 
and Wahlquist 1975), and to the third class, the timing of millisecond pul- 
sars (e.g. see Stinebring et al. 1990), anisotropies in the cosmic microwave 
background (e.g. see Zel'dovich and Novikov 1983), and time delays between 
different images in gravitational lenses (Allen 1989). 

The detectors in the third class give already interesting upper bounds 
on the stochastic gravity-wave background. LAGOS will be very important 
for the detection of periodic gravitational waves from short orbital-period 
binaries like i-Boo or even PSR 1534+12 (Wolszczan 1991). The periodic 
gravitational waves from newborn, and perhaps also older, rotating neutron 
stars will fall into the domain of the Earth-based detectors. The main im- 
portance of these detectors will lie, however, in the detection of gravitational 
waves from coalescing binaries and Type II supernova explosions. 

The Fig.13 shows to be expected gravity-wave amplitudes and an ad- 
vanced detector-sensitivity curve for a laserinterferometric Earth-based de- 
tector, heft denotes the effective gravity-wave amplitude, heft = h (n /2)  1/2, 
where n specifies the number of oscillations near the frequency f and h is 
the true amplitude. 

For coalescing neutron star binaries one expects several events per year 
in a sphere with radius 200 Mpc (Phinney 1991; Narayan et al. 1991) and 
for Type II supernovae the corresponding radius is expected to be about 
15 Mpc (van den Bergh and Tammann 1991). 15 Mpc is the approximate 
distance to the Virgo duster, the duster nearest to our Galaxy. Because 
the rates of black-hole collapse and of non-axisymmetrical neutron star 
formation are still very uncertain the most secure conclusion we can draw 
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Fig. 13. Expected effective gravity-wave amplitudes and advanced detector sensi- 
tivity vs. gravity-wave frequency f.  (See also Fig.13 of the contribution by Danz- 
mann et al., these proceedings). The sources of the Models A and D (see Sec.3.1) 
are located at 1Mpc, about the edge of the Local Group. A 20M® axisymmetric 
black-hole collapse at 15Mpc is indicated by BH, see Sec.3.2. 

from Fig.13 is: to search for gravitational waves from coalescing neutron 
star binaries. 
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1 Introduct ion  

More than 70 years ago, Gravitational Waves have been predicted as one 
of the consequences of Einstein's Theory of General Relativity. Einstein de- 
scribes gravity as a curvature of space-time [1]. When the curvature is weak, 
it produces Newtonian gravity that we are so familiar with. But a strong 
curvature behaves in a very different, non-linear fashion. Actually curva- 
ture can produce curvature without the aid of any matter. Fast variations 
of the curvature in time, (due to stellar collapse or collisions, for example) 
should produce ripples in the fabric of space-time that propagate out at the 
speed of light and carry the information about the underlying cosmic events. 
Gravitational waves are clearly one of the fundamental building blocks of 
our theoretical picture of the universe and there is some circumstantial evi- 
dence pointing to their existence [2]. But in spite of numerous attempts over 
the last 30 years, their direct detection remains as one of the great unsolved 
problems of experimental physics. 

1.1 The Birth of Gravitational Astronomy 

Today, the technology seems to be in hand to finally tackle this problem 
and this article is aiming at outlining the current efforts to bring non-linear 
gravity into confrontation with experiment through the detection of gravita- 
tional waves. But the falal aim is not a mere proof of the existence of gravity 
waves, rather to make them useful for observational astronomy through the 
creation of a world-wide network of detectors. We have to realize that the 
information carried by gravitational waves is complementary to the informa- 
tion carried by electro-magnetic radiation. Whereas electro-magnetic radia- 
tion is an incoherent superposition of radiation mostly emitted by thermally 
excited atoms and high-energy electrons, it is the coherent, bulk motion of 
huge amounts of mass that produces significant levels of gravity waves. 
Electro-magnetic radiation is easily scattered and absorbed, but gravita- 
tional radiation is transmitted almost undisturbed through all forms and 
amounts of intervening matter [3]. The introduction of Gravitational As- 
tronomy would thus literally open a new window to the universe. 

Nobody really knows with certainty how hard it will be to open this win- 
dow. It is difficult to predict, from our present knowledge based on electro- 
magnetic radiation, just how sensitive a detector has to be to begin to see 
gravitational waves. But once it does see waves, it will give us information 
about the universe that we have almost no hope of gaining in any other way. 
Optical and radio telescopes are sensitive to stellar atmospheres, interstel- 
lar dust or primordial gas, all things that a gravitational wave detector will 
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not see. Instead, we will learn about the inspiral and coalescence of black 
hole and neutron star binaries, their birth-rates and distribution in distant 
galaxies, the final collapse of asymmetric supernova cores, "cosmic strings", 
and the first millisecond of the big bang [4]. 

2 The  Detec t ion  of Gravitat ional  Waves 

Gravitational waves change the metric of space-time. They can be detected 
through the strain in space created by their passage. Consider a gravity 
wave impinging perpendicular to the plane of a circle, see Fig.1. During the 
first half-cycle of the wave, the circle will be deformed into a standing ellipse 
and during the second half-cycle into a horizontal ellipse. It is the fractional 
change in diameter that is commonly quoted as a measure for the amplitude, 
h = 2 d L / L ,  of a gravitational wave. The principle behind the detection of 
gravity waves is thus a simple length measurement. The problem is that the 
length change is so small. As an example, consider a supernova in a not too 
distant galaxy. This might produce a relative length change here on earth 
of 1 part in 10 ~1. Such a relative length change corresponds to the diameter 
of one hydrogen atom on the distance from here to the sun, or equivalently 
to a thousandth of a proton diameter on GEO's 3 km long detector arms. 
And this happens during a few milliseconds only. 

\ /  

> T 
L + d L  

l 
Fig. 1. Gravitational waves change distances by squeezing space. 

2.1 Bar A n t e n n a s  

The history of attempts to detect gravity waves began in the 1960s with 
the famous bar experiments of Joseph Weber [5]. Bar antennas, in principle, 
are very simple objects. Imagine a large cylindrical block of e.g. aluminum 
that during the passage of a gravitational wave gets excited similarly to 
being struck with a hammer. Even though these experiments have not yet 
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detected gravitational waves, they had the undisputed effect of alerting the 
scientific community to the possibility of experimentally detecting gravity 
waves. Bar detectors have in the meantime been developed and refined in 
several places all over the world. Being supercooled to mK temperatures 
and equipped with very sophisticated length transducers [6], they have now 
reached a sensitivity (h = 10 -18 for millisecond pulses) where they could 
expect to see the next supernova in our own galaxy, and they are likely to 
remain an important ingredient of the world-wide gravity wave-watch. But 
being resonant devices, they are in practice sensitive only in a relatively 
narrow band around their central frequency. They. are also limited in their 
sensitivity through the quantum-mechanical uncertainty of their mechan- 
ical state, although this limitation may in priciple be overcome by QND 
techniques, and so their usefulness will in all likelihood remain very limited 
for the forseeable future. 

2.2 Laser Interferometers 

Although the seeds of the idea can already be found in early papers by Pirani 
[7] and Gertsenshtein and Pustovoit [8], it was really in the early 1970s when 
the idea emerged that laser interferometers might have a better chance of 
detecting gravity waves, mainly promoted by Weiss [9] and Forward [10]. 
Large interferometers would offer the additional advantage of having broad- 
band sensitivity and they would not be limited by the uncertainty principle 
until well below a sensitivity of 10 -23. A Michelson interferometer measures 
the phase difference between two light fields having propagated up and down 
two perpendicular directions, i.e. essentially the length difference between 
the two arms. This is exactly the quantity that would be changed by the 
passage of a properly oriented gravitational wave, see Fig. 2. 

Immediately obvious at this point is the need for long interferometer 
arms. The quantity measured is the absolute phase difference between the 
fields. But the gravity wave induces a fractional length change. So the phase 
difference measured can be increased by increasing the armlength or, equiva- 
lently, the interaction time of the light with the gravity wave. This works up 
to an optimum for an interaction time equal to half a gravity wave period. 
For a gravity wave frequency of 1 kHz this corresponds to half a millisecond 
or an armlength of 75 kilometers. 

2.2.1 Long Light-Path 

While it is clearly impractical to build such a large intefferometer, there 
are ways to increase the interaction time without increasing the physical 
arm-length beyond reasonable limits (see the two following contributions by 
W. Winkler and A. Riidiger). Historically, two approaches have emerged: 
storing the light in the arms in resonant optical Fabry-Perot cavities [11] and 
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Fig. 2. Michelson interferometer 

literally folding the light back and forth in optical delay lines [12]. Nowadays 
this distinction is beginning to disappear, because with the development of 
Dual Recycling [13], a new optical technique, to be discussed later, we now 
have a hybrid arrangement in our hands that combines the advantages of 
both approaches mad more. 

2.3 Prototypes 

Several small prototypes of laser intefferometric gravitational wave detectors 
have been developed in the world, a delay-line based interferometer with 
30 m armlength at the Max-Planck-Institut fiir Quantenoptik in Garching, 
a Fabry-Perot based instrument with 10m armlength at the University of 
Glasgow, a delay-line based instrument with 10 m asTalength at the Institute 
for Space and Astronautical Science in Tokyo, and a Fabry-Perot based 
instrument with 40 m armlength at the California Institute of Technology. 
With arm-lengths on the order of a few tens of meters these prototypes 
are clearly too small to permit observations of real gravity waves. Their 
sensitivities have continually been improved over the years, and the larger 
ones have all reached sensitivities for millisecond pulses roughly equivalent 
to the best bar detectors, but in addition they are broad-band devices. 

While the absolute sensitivity reached by the prototype detectors is cer- 
tainly encouraging, it is much more important that they are well-understood 
devices. That is, the various physical processes creating noise sources at the 
various frequencies have to be identified in order to find ways to improve 
on those. In Fig. 3 we see such a noise analysis for the Garching 30-m pro- 
totype [14]. 

Shown is the spectral density of the apparent mirror displacement as 
expected from the most important noise sources. For comparison, the mea- 
sured spectral density of displacement noise is also given. Very good agree- 
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Fig. 8. Noise analysis of the Garching 30-m prototype 

merit between the measured and the expected noise is found. The additional 
sharp pealcs at frequencies of a few hundred Hertz are due to violin string 
resonances of the suspension wires holding the mirrors. The sensitivity of 
the prototype is presently limited by residual ground motion at frequencies 
below 1 kHz (labeled c in Fig. 3), by the photon shot noise corresponding to 
the awilable laser power at frequencies between 1 kHz and 6 kHz (labeled a), 
by the thermallly excited internal mechanical vibration of the mirrors in a 
narrow peak at 6 kHz (labeled f), and by residual frequency fluctuations of 
the laser at higher frequencies (labeled g). At the present level of sensitivity, 
the refractive index fluctuations due to the Brownian motion of the resid- 
ual gas in the vacuum pipe (labeled b) are unimportant. Also unimportant 
at this level are the above-resonant wing of the thermally excited mirror 
suspension pendulum resonance (labeled e), the sub-resonant wing of the 
mirror internal mechanical resonance (labeled a), and the noise introduced 
by the electronic damping system for the mirror suspension (labeled d, see 
also Sect. 3.6.1). 
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3 The GEO Project 

After almost two decades of research on small prototypes, the time had come 
to proceed towards the construction of full-scale interferometers with arm- 
lengths of several kilometers, and several such proposals were submitted at 
the end of the 1980s. Out of ten research groups in Germany and Britain, 
the GEO collaboration was formed [15], aiming at the construction of a laser 
interferometer with 3 km arm-length near Hannover in the German state of 
Niedersachsen. The research groups involved are listed at the beginning of 
this contribution. 

In the following, the main problems encountered in the design of such an 
intefferometer and the envisioned solutions are highlighted using the GEO 
project as an example. But it should be emphasized that the problems are 
common to all projects and that there actually is a very strong coordination 
and sharing of tasks between the various collaborations, especially between 
the German-British GEO project and the French-Italian VIIi,GO project, 
An overview of the current status (spring of 1992) of the world-wide efforts 
is given at the end. 

3.1 T h e  Laser  Source  

The sensitivity of a simple Michelson intefferometer with optimized arm- 
length to gravitational wave bursts is limited by the photon shot noise to 

hDZ,~2.4X10 -2, r do 1-,/2 [ f 13/2 [ 5-6- j L ' (1) 

where e is the quantum efficiency of the detector, Io is the laser output 
power, and f is the center frequency of the burst. Green light and a band- 
width of half the center frequency have been assumed. The first problem 
to be solved is thus the construction of a laser with sufficient output power 
in a stable single transverse and longitudinal mode. Moreover, frequency as 
well as amplitude of the laser have to be stabilized to unprecedented values. 

3.1.1 Output Power 

Currently all operating prototypes use Argon ion lasers as light sources. The 
most powerful commercially available lasers of this type offer a single-mode 
output power of about 5 W. The coherent addition of several such lasers 
phase-locked to a master oscillator to reach higher output power has been 
demonstrated experimentally [16]. But this approach does not seem promis- 
ing because of the poor energy efficiency of these lasers (only about 10-4), 
their complexity and high cost of operation and their poor free-running noise 
that requires elaborate means for stabilization. The laser source under de- 
velopment for the GEO detector is an all-solid state YAG laser pumped 
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by laser diodes. YAG lasers have traditionally been pumped by discharge 
lamps, but the dramatic advances in the development of laser diodes in the 
last few years have now made it possible to replace the noisy and inefficient 
lamps with diode lasers [17]. 

This laser will be based on a diode-pumped miniature monolithic ring 
laser oscillator (see Fig. 4) with an output power of a few hundred milliwatts. 
The oscillator incorporates an electro-optic phase modulator to permit fast 
tuning and easy frequency stabilization. The output of this oscillator is then 
amplified in diode-pumped YAG slabs enclosed in discrete ring resonators. 
The oscillator is operational and by the end of 1992 the final laser system 
is expected to deliver a single-mode output power of more than 50 W at a 
wavelength of 1064nm. Although the fundamental wavelength of this laser 
could be used in an interferometer (and there may actually be advantages as 
far as the fundamental absorption in optical components is concerned) we 
are investigating the option of doubling the frequency to obtain light in the 
green at 532 nm. Because of the higher energy per photon in the green only 
half the power is required to reach the same shot-noise limited sensitivity. 
Also the optical components can be smaller because the diffraction-limited 
beam-diameter is smaller in the green by the square-root of two. Doubling ef- 
ficiencies around 50 percent have been achieved by others for powers around 
10 W and much more seems possible [18]. This option will be investigated 
over the next two years. 
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Fig. 4. Monolithic Nd-YAG ringlaser (dimensions in ram) 

3.1.2 Frequency Noise 

A perfect interferometer is entirely insensitive to frequency fluctuations of 
the laser. But in a reM interferometer, noise signals can be created if at the 
output of the interferometer there is interference of lightbeams that have 
a different history. Such a situation can arise if the storage times in the 
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arms are not identical, or if stray light can reach the output through a path 
different from that of the main beam. If the relative amplitude of stray light 
capable of interfering with the main beam is a, then the arm-length change 
6tt simulated by a frequency change ~ of the laser is 

6e 6u 
, (2) 

u 

if stray-light with a path-difference of one full round-trip dominates. 
The prototypes use relatively noisy Argon lasers that require sophisti- 

cated frequency stabilization techniques. Figure 5 shows as an example the 
unstabilized frequency noise of the laser previously used on the Garching 
prototype, curve (a). Curve" (b) shows the noise after prestabilization onto 
a rigid Fabry-Perot reference resonator, and curve (c) shows the noise after 
final stabilization onto the average armlength of the 30-m interferometer. 'A 
lowest value of about 5 x 10-aHz/x/~z is reached in the relevant frequency 
range. The Argon laser in the Glasgow prototype, being stabilized onto the 
10 m long Fabry-Perot cavity in one of the interferometer arms using similar 
techniques, reaches a frequency noise of a few times 10-SHz/v/-H~. 

N , :z:, 
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Fig. 5. Frequency noise of the Garching Innova 90-5 laser: 
(a) upper curve: unstabilized laser, 
(b) middle curve: laser stabilized onto a 25-cm rigid Fabry-Perot, 
(c) lower curve: laser stabilized onto the interferometer armlength. 

For a full-scale detector, the frequency-noise out of the laser must be 
smaller than 10 -6Hz /V~ .  But for the diode-pumped YAG laser the un- 
stabilized frequency noise is orders of magnitude smaller than for an Argon 
laser. So achieving the same gain in the feed-back loop as for the Argon 
laser is already enough to reach the desired stability goal. 
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3.2 Recyc l ing  

Clearly the sensitivity of a simple Michelson interferometer is not sufficient, 
even if very strong lasers are used. Two techniques have been developed that 
improve the interferometer sensitivity to a level that would allow the de- 
tection of gravitationM wave signals with high confidence. These techniques 
are known as Power Recycling a~d Signal Recycling, and the combination 
of both as DuM Recycling [13]. 

r 

MO 
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Fig. 6. DuM recycled interferometer 

Power Recycling makes use of the fact that the interferometer output is 
held on a dark fringe by a feed-back loop and almost all the light goes back 
towards the input, i.e. the locked interferometer behaves as a mirror. By 
placing a mirror in the input of the interferometer, a resonant optical cavity 
can be formed that uses the whole locked interferometer as an end mirror. 
So the circulating light power inside the interferometer will be higher than 
the laser power by the inverse of the losses in the interferometer. 

Signal Recycling works similarly, except that it leads to a resonant en- 
hancement of the signal instead of the light. A gravity wave shaking the 
mirrors will phase modulate the reflected laser light, or in other words ere- 
ate side-bands of the laser frequency. These side-bands exit through the 
output port of the interferometer. By placing another mirror there, a res- 
onant cavity for the signal-containing side-bands is formed. Depending on 
the refiectivity of this mirror, the detector can be made to operate narrow- 
band or broad-band, and by changing the position of this mirror the in- 
terferometer can be tuned. As a~ additional advantage, this configuration 
greatly reduces the power losses due to bad interference, because the light 
can no longer escape the interferometer through the output port, which is 
now closed by the signal recycling mirror. Just as the signal recycling cav- 
ity enhances light at its resonant mode and frequency, it suppresses light 
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which, through aberrations, got diffracted into non-resonant modes of the 
light field. 

The shot noise-limited sensitivity of a Dual Recycled interferometer to 
gravitational wave bursts is given by 

1 - R  r-o 1 
L5owJ L 3--k-m'mJ , (2) 

where f is the center frequency of the burst, e is the quantum efficiency of 
the detector, -To is the laser output power, g is the arm-length, a n d / / i s  the 
mirror reflectivity. Green light and a bandwidth ofhalf the center frequency 
have been assumed. 

3.3 M i r r o r  Losses 

In order to make these recycling techniques work, we need mirrors with 
extremely small losses. This requires substrates with a microroughness on 
the order of an Angstrom and reflective coatings with very small scatter 
and absorption. Fortunately, the last few years have brought us tremendous 
advances in the art of maldng superpolishes and supercoatings. Mirrors with 
reflection losses of much less than 50 parts per million are now available from 
several sources. 

But it is not just the linear reflection losses that are responsible for the 
total losses in the Power Recycling cavity. One of the "mirrors" of this cavity 
is actually a very complicated object, - an interferometer locked to a dark 
fringe. So any effect that degrades the interfering wavefronts will let light 
leak out the wrong port of the interferometer. Though some of this fight can 
be recovered by the Signal Recycling mirror, this is a serious loss process 
for the Power Recycling cavity. 

There are two main reasons for a degradation of the interference in the 
interferometer: wavefront deformation because of imperfections of optical 
elements and because of thermal effects in the optical elements. Both pro- 
cesses can be addressed through optical modeling and numerical wavefront 
propagation calculations. 

3.3.1 Thermal D i s t o r t i o n s  

Thermal effects can arise because of absorption in the optical coatings or in 
the bulk of elements used in transmission. This will cause a deformation of 
the substrates and/or a lensing effect through thermally induced refractive 
index changes. Figure 7 is the result of a model calculation including thermal 
effects for the main mirrors [19]. It shows the interference minimum as a 
function of the thermally induced mirror deformation. For increasing light 
power, the interference quality deteriorates in a very non-linear fashion, 
even approaching chaotic looking behaviour above a certain threshold. 
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Fig. 7. Power loss due to thermal effects: 
interference minimum as a function of local mirror deformation. 

We have studied the absorption in coatings produced in ion beam sput- 
tering chambers (one of which we have access to inside the collaboration 
at LZH). Fortunately, the absorption in modern coatings is only on the or- 
der of very few parts per million and thermal effects seem very tractable. 
Absorption in the bulk of the beam-splitter will probably be the limiting 
process at circulating powers of many kilowatts. 

3.3.2 Mirror Quality 

Existing supermirrors with almost negligible losses have been developed for 
applications using spot sizes of a millimeter or so. For large laser interfer- 
ometers the beam size will be on the order of several centimeters and the 
high demands on the surface quality now extend to much larger lateral di- 
mensions. Surface deformations on length scales of several centimeters will 
behave just as the microrouglmess does for the smMler beams. But it is 
not the substrate Mone that determines the surface quality. The reflective 
dielectric multilayer stack coated onto the mirror can show variations of its 
effective thickness that may overwhelm the surface variations of the sub- 
strafe. 

3.3.3 Optical Modeling 

Using a numerical wavefront-propagation code running on t h e  Garching 
Cray Y-MP, we are studying the effects of surface deformations on the 
light fields in the interferometer. Currently this code can propagate optical 
wavefronts on a 4000 x 4000 grid. So it is possible to even include scattering 
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to angles large enough for the light to miss the end mirror entirely and 
to hit the vacuum tube after a few hundred meters. This light will then 
be converted into the diffuse background of scattered light. The code takes 
as its input assumed or measured surface profiles of the relevant mirrors. 
Surface deviations from the ideal shape can be measured with today's state- 
of-the-art to an accuracy of a few Angstroms over a field of a quarter of a 
meter with a laterM resolution of half a millimeter [20]. 

As an example, Fig. 8 shows the output  field expected for a 3-kin inter- 
ferometer with a mirror distortion of A/1000 amplitude on a length scale 
equal to the beam diameter. The code permits us to simulate all kinds 
of mirror distortions al~d to predict the performance of a specific mirror in 
practice. Through an R+D contract with Zeiss we are addressing the mirror 
manufacturing problem and we are confident that  in 1992 the first prototype 
mirrors with the required quMity will be finished. 
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Fig. 8. Output field for mirror with A/1000 distortion 

3.4 T h e r m a l  Noise  

3.4.1 Mirror Internal Noise 

The mirrors are macroscopic objects and, correspondingly, have internM 
mechanical vibration modes. Even for perfectly well isolated mirrors, these 
resonances will still get thermally excited. At the resonant frequencies the 
mechanical vibration amplitudes are too large and will overwhelm any mir- 
ror motion due to a possible gravitational wave. The only solution is to shift 
all mechanical resonances out of the frequency range of interest by a suit- 
able choice of mirror shape and material. The best compromise is obtained 
for cylindrical mirrors with a length about half the diameter. For synthetic 
quartz this yields resonant frequencies of a few kHz, - above the interesting 
frequency window. 
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But even though the resonances are outside the observation window, the 
sub-resonant wings of those resonances do cause a stochastic motion of the 
mirror surface. The strain spectral density due to these motions is given by 

i 16kT 
 3pv 3Q,N,rt 2, (3) 

where p is the density, g the arm-length, vs the sound velocity, and QINT the 
mechanical quality factor of the mirror material. Note that this expression 
is independent of mirror size. It is mandatory to use a material with very 
low internal damping (very high Q). Single crystal Silicon suggests itself for 
the non-transmitting components with a Q of up to 10 s, but even synthetic 
quartz gives a Q of a few hundred thousand, whereas low-expansion Zerodur 
only has a Q of about 1000. Special attention has to be p~id to the way of 
suspending the mirrors, because any way of dissipating energy, like friction 
of a rubbing suspension wire, will immediately destroy an internal Q as high 
as this. The problem of material Q as a function of experimental parameters 
is currently being investigated by us [21]. 

It should be noted that the noise density due to thermal mirror noise will 
be strictly constant in frequency only if the internal damping mechanism 
has viscosity-like behaviour. Sub-resonant thermal noise like this has never 
been measured directly, but it is highly likely that the mechanical mirror 
resonance will behave nmch more like a harmonic oscillator with a complex 
spring constant [22]. In this case the thermal noise would actually increase 
from the quoted level towards lower frequellcies like the inverse of the square- 
root of the frequency. 

3.4.2 Suspension Noise 

Thermal noise is also present in the last stage of the vibration isolation sys- 
tem. This will be a simple wire pendulum made from a sling supporting the 
mirror. In this case the resonant frequency is about 1 Hz, and the frequency 
window of observation is on the above-resonant wing. The spectral density 
of apparent strain noise due to this effect is given by 

i l6kTwo 
mQs 4e (4) 

where m is the mirror mass, Wo the resonant frequency and Qs the me- 
chanical quality factor of the suspension pendulum. This Q can be much 
higher than the internal Q of the wire material because most of the energy 
of the pendulum is in the form of potential and kinetic energy of the swing- 
ing bob and not in the elastic energy of a bent wire. But it is extremely 
important that the wire support points be properly designed to avoid fric- 
tion. Pendulum Qs as high as 107 have been experimentally observed [25], 
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(meaning that a 1 Hz pendulum will oscillate for more than 4 months before 
its amplitude has decreased to one-third). 

3.5 Vibrat ion  Isolat ion 

We are trying to measure very small length changes due to the action of 
gravitational waves and so it is extremely important to ensure that no other 
effect moves the test masses. By far the largest disturbance is the random 
ground motion because of the natural seismic activity. The spectral density 
of displacement due to seismic ground motion typically falls of as 

lO-TmlvrffT  (5) 

At a frequency of 1 kHz, this is about 107 times larger than the effect we 
are trying to measure and we require an effective way of vibration isolating 
the test masses. 

Passive vibration isolation is, in principle, straightforward [23]. The ob- 
ject to be isolated gets suspended by a pendulum. If a disturbance shakes 
the suspension point of the pendulum with a frequency below its resonant 
frequency, then the pendulum will transmit the disturbance unattenuated. 
But a disturbance above the resonant frequency fo will get attenuated with 
the ratio ( f o i l )  2 up to a frequency Qfo, where the frequency dependence 
changes to a linear slope. The resonant frequency fo should thus be as low as 
possible. Due to practical limitations on the pendulum length to around one 
meter, horizontal resonant frequencies are usually limited to around I Hz. 
Vertical resonant frequencies are normally a bit higher because the spring 
has to be stiff enough to support the full load. Several of these stages can 
be cascaded to achieve a very steep fall-off above the highest normal mode 
of the coupled oscillator system. 

3.5.1 Stacks 

A very simple, yet very effective way of achieving vibration isolation at 
moderately high frequencies (above 100 Hz) is the use of vibration isolation 
stacks. A detailed analysis of stack systems has recently been carried out by 
Cantley et al [26]. Stacks are basically alternating layers of a high-density 
material (like lead) and rubber. Each layer acts as a 3-dimensional pendu- 
lum, although with a fairly low Q. But since it is easy to use several such 
layers, a rather steep fall-off towards higher frequencies can be achieved. 
As an example, Fig. 9 shows a comparison between calculated and mea- 
sured transmissibility of a small 4-layer lead-rubber stack intended for the 
Garching prototype. 

Because of their low mechanical Q-factor, such stacks show a rather 
high thermal noise. The last two stages of the suspension should accord- 
ingly be very high-Q wire pendulums of low resonant frequency. These will 
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Fig.  9. Transmissibility of a 4-layer stack 
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Fig. 10. GEO suspension 
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also give an additional 1 / f  4 filtering in the horizontal direction where it is 
most critical (this is the direction of the laser beam; in principle, vibration 
isolation in the vertical direction is only required because of the unavoidable 
cross-coupling between the two degrees of freedom). 

The design chosen for the GEO suspension isshown in Figs. 10 and !1. 
It consists of an active airspring system as a first stage to give some very 
low-frequency isolation. Supported by this system is a five-layer isolation 
stack supporting the top plate. Each of the layers has a horizontal resonant 
frequency of 10Hz, a vertical resonance at 30 Hz and a Q of about 2. The 
top plate is a hollow structure filled with damping material to suppress 
structural resonances. The mirror is suspended from the top plate through a 
double wire pendulum with an intermediate mass. Each of these pendulums 
has a resonance at 1 Hz. Some small components that require fast feed- 
ba& (see below) ave paired up with reaction masses. The total isolation 
as expected from model calculations should be more than sufficient at all 
frequencies above 100 Hz. 
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Fig. i i .  GEO suspension 

3.5.2  L o w - F r e q u e n c y  I so la t ion  

Extending vibration isolation down to lower frequencies becomes increas- 
ingly difficult. The ground noise spectrum increases towards lower frequen- 
cies like 1 / f  2 and the isolation decreases because one is moving closer to the 
highest normal mode of the pendulum chain. Some very promising work on 
low frequency passive isolation has been done in Pisa [34]. The 12 m-high 
Superattenuator uses a cascade of an inverted pendulum, 7 gas springs, and 
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a wire pendulum to achieve efficient vibration isolation above 10 Hz. If the 
control problems associated with this approach can be solved, it could be 
an alternative to the use of stacks. 

Another way of achieving isolation at very low frequencies would be the 
use of active or combined active/passive vibration isolation systems. Some 
very promising work, aiming at achieving isolation all the way down to 1 Hz, 
is going on at the Joint Institute for Laboratory Astrophysics in Boulder, 
Colorado [28]. 

3.6 Position Control and Feed-Back 

An intefferometer with as many components and degrees of freedom as a 
gravitational wave detector requires sophisticated control systems to keep 
all parameters at their optimal operating points. The guiding principle be- 
hind the position control of the optical components is easily stated: At low 
frequencies the optical components must be rigidly held relative to each 
other to keep them from drifting and to prevent the interferometer and the 
recycling cavities from losing -lock. On the other hand, at higher frequencies, 
where gravitational wave signals could be d~etected (above 100 Hz), the test 
masses must be totally free and the system used to prevent them from mov- 
ing at low frequencies must not exert any residual forces at high frequencies. 
Three main classes of control systems are used: 

3.6.1 Local Controls 

The suspension of the optical components via high-Q pendulums is an ef- 
ficient way to isolate them from high-frequency vibrations and pendulum 
thermM noise. But at the resonant frequencies of the undamped suspension, 
large vibration amplitudes can occur that will greatly exceed the dynamic 
range of the detector (a pendulum with a Q of 107 can, at its resonance, lead 
to an amplification of up to 107). The resonance must thus be damped. But 
damping it in the usual dissipative way will degrade the Q and introduce 
thermal noise. The damping is instead done in an active and frequency- 
selective way. This technique is routinely used on the prototypes. The po- 
sition of the masses is sensed with a low-noise local sensor. This signM is 
then electronically filtered to a narrow frequency range around the reso- 
nance and then fed back to a force transducer acting on the mass selec- 
tively in this band around the resonant frequency only. On the prototypes 
the position sensing is usually done via shadow sensors consisting of a LED- 
photodetector pair with the light path partly interrupted by a movable vane 
mounted on the test mass. The force is applied through a coil acting on a 
magnet on the mass. Such systems typically show a sensing noise of around 
10-11m/xfH~. In the full scale detector we are trying to measure displace- 
ments smaller than 10-2°m/x/-H-z. So the servo gMn would have to roll off by 
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9 orders of magnitude in the small frequency range from a few Hz to 100 Hz, 
which is clearly a formidable task. The problem can be solved by sensing 
the motion of, and applying feed-back to, a higher stage in the suspension 
system and using the passive 1 / f  2 filtering of each stage. Such systems are 
currently being tested in the prototypes. 

3.6.2 Global Controls 
In order to optimally align an optical interferometer, and keep it aligned 
regardless of drift or stability of the optical components, some kind of au- 
tomatic alignment system is required. The guiding principle is that the 
alignment signals for such a system should be derived directly from the ex- 
isting interfering beams without introducing additional components into the 
high-sensitivity/high-intensity part of the intefferometer. Suitable feed-back 
should then be applied to all the relevant optical components. 

For example~ consider the case of two interfering beams, where a dif- 
ferential high frequency phase modulation is applied and the overall phase 
difference is determined by coherently demodulating the intensity of the 
interfered output. Relative angular misalignment introduces a differential 
phase gradient between the two beams which can be sensed using a split 
photodiode and coherently demodulating as before. Lateral misalignment 
may be detected using another split photodiode and a suitable lens ar- 
rangement to cause laterally offset beams to converge. 
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Fig. 12. Automatic alignment of a Fabry-Perot cavity 

An illustration of this techniques for a Fabry-Perot cavity is given in 
Fig. 12. All 4 degrees of freedom necessary for alignment can be extracted. 
An extension of this technique can be used to automatically align all degrees 
of freedom for all components of the interferometer. A system similar to the 
automatic alignment system intended for the large interferometer is being 
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installed and tested in the Glasgow prototype [27] and will be installed in 
the Garching prototype after it is reconstructed. 

3.6.3 Fast Feed-Back 

While high-frequency ground motions can be efficiently suppressed by the 
suspension system, there are very-low frequency seismic motions (1 Hz and 
less) that are very difficult to isolate against. This very-low frequency seismic 
motion may lead to rms differential arm-length changes of several microns. 
Unsuppressed, these would lead to a severe limitation of the sensitivity 'of 
the detector, because an intefferometer operating away from its null fringe 
by an amount ~x becomes sensitive to the intensity fluctuations 6I of the 
laser according to 

h.oiso- e z (6) 

The sensing in this case is no problem, because the main intefferometer 
output itself provides the signal. But these dcviations from the null have to 
be suppressed by at least 10 6 which requires a fast servo with a bandwidth 
of order a kHz. These correction signals will be applied to the small optical 
components in the 3-kin intefferometer such as beam-splitter and retro- 
mirror. This feed-back is best applied relative to a reaction mass suspended 
from the same isolation system to avoid coupling ground motion back in 
through the actuator (see Fig. 11). 

3.'/ V a c u u m  S y s t e m  

At the required sensitivity, the whole detector must operate in a high vac- 
uum to reduce noise from gas molecules. The limiting criterion is the fluc- 
tuation in the refractive index due to changes in the average density of the 
gas through which the laser beams pass, resulting in phase shifts of the 
interfering light beams. If these changes occur in the frequency window of 
observation (from a few tens of Hz to a few kHz) they can mask gravitational 
event s. 

Pressure fluctuations can arise from the random motion of the gas 
molecules in the vacuum tubes and chambers. The amplitude of a fluc- 
tuation is proportional to the square root of the pressure. To reach the 
proposed sensitivity of the detector, a pressure smaller than 10-Smbar is 
required for Hydrogen. Since other gazes have higher refractive indices, the 
sum of their partial pressures should be smaller than 10-9mbar. Finally, the 
system should be hydrocarbon free as far as technically possible. 

Pressure fluctuations can also arise from changes in the pumping speed. 
There are mechanisms which could cause fluctuations in pumping speed 
for most UHV pumps. Ion pumps have noisy discharge currents, cryogenic 
pumps are likely to emit bursts of gas and even turbomolecular pumps can 
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show variations of their pumping speed due to asymmetries and fluctua- 
tions in the rotation or variations in the bacldng line. We are currently 
investigating the subject of fast pressure bursts due to vacuum pumps. 

However, it is difficult to think of mechanisms for fluctuations in the 
pumping speed of non-evaporable getter (NEG) pumps. Also, their opera- 
tion is completely vibration-free. As a result, 21 NEG pumps of 14 0001/s 
capacity each have been chosen in our conceptual design to provide the main 
UHV pumping [24]. 

The vacuum tubing carrying the laser beams up and down the two arms 
will have a total length of 6 km and a diameter of 1.4 m and will be one 
of the largest UHV systems in the world. It will be one of the most costly 
elements of the detector. It is thus worthwhile to look for unconventional 
designs to save costs on this component. We are proposing to use a thin- 
walled (0.7 mm) tube made from 316L stainless steel sheet material. To 
provide stability, it would have a continuous corrugation with a height of 
40 mm peak-to-peak over the whole length of the tube. Such a tube, if 
continuously manufactured and welded on site, would cost only a small 
fraction of a more traditional thick-walled and flanged tube. Vacuum tests 
on a 5 m-long test section showed very promising results, especially a very 
low outga~sing rate of 3 x 10 -13 mbar 1/s/cm 2 after baking it at only 150 C 
{24]. 

Before deciding on this design for the final detector, more tests have to 
be done on a much longer test section manufactured under field conditions. 
These tests are currently being prepared by the European research groups. 

4 D e t e c t o r  R e a l i z a t i o n  

The proposed detector consists of two perpendicular arms, each of 3km 
length. The vacuum system is designed to accommodate two simultaneously 
operating interferometers which can be optimized to different parameters. 
Commissioning is planned to proceed in steps from a simple Michelson in- 
terferometer to a full Dual-Recycled system and will take several years after 
the installation of the first interferometer. After reaching a burst sensitiv- 
ity of 10 -21 we expect to split the available detector time roughly equally 
between observation runs and experimental work to push the sensitivity fur- 
ther towards a value of 10 -22. The significance of the various noise sources 
for the sensitivity of a fully optimized interferometer to broad-band grav- 
itational wave bursts is shown in Fig. 13. The curve labeled seismic noise 
is valid for the described stack system. With a Pisa-type suspension, the 
curve would be moved to the left edge of the figure and the low-frequency 
sensitivity would be limited by thermal suspension noise. The thermal noise 
in Fig. 13 has been calculated assuming viscosity-like internal damping for 
mirrors and suspension. 
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Fig.  13. Noise sources relevant for the detector 

The site selection survey was finished in 1991 and two suitable sites were 
identified near Hannover in the German state of Niedersachsen. One of them 
is a fiat, dry and uninhabited piece of land owned by the state government. 
Here, the tunnel housing would be a concrete structure with 3 m internal 
height and a width of 4 m submerged in a trench close to the surface. The 
control building as well as the laboratory buildings containing the vacuum 
tanks and the optics would be conventional structures above ground. The 
other possible site is a mountain site also owned by the state government. 
Here, the arms would be in a 4-m diameter underground tunnel cut through 
bedrock. The vacuum tanks and optics at the vertex and the ends of the 
arms would be in 35-m diameter underground caverns, but each of the three 
corner caverns would be accessible from the outside through short horizontal 
access tunnels. Only the control building would be visible above ground. 
Geological, hydrological and seismological investigations found both sites 
very suitable; the mountain site having an advantage with respect to seismic 
noise, of course. Costings and architecturM designs have been prepared. 
Construction at the underground site has been found to be more expensive 
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by about 15 percent. The final decision between the two sites will be made 
in 1992, largely based on necessary additional environmental impact studies. 
An impression of the main control building is given in Fig. 14. 
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5 Status  of  Efforts in the  World 

5.1 Proposals 

The American LIGO proposal [29] calls for the construction of two detectors 
with 4 km arm-length. It was approved in the fall of 1991 and funds have 
been appropriated by Congress. Two sites were selected in the spring of 
1992, one in Hanford, Washington and the other in Livingston, Louisiana. 
Construction is expected to begin in 1993 and commissioning may start as 
early as 1997. 

An Australian proposal (AIGO) for a 3-km detector [30] has been sub- 
mitred, but has not been able to obtain approval. 

In Japan, a proposal for an intermediate 100-m interferometer (TENKO- 
100) [31] has been funded. Construction may be finished in 1994. In parallel, 
plans are being developed for a 3-km interferometer. 

The French-Italian VIRGO collaboration [32] has proposed a 3-kin inter- 
ferometer to be built near Pisa and the German-British GEO collaboration 
[15] has proposed a 3-km interferometer to be built near Hannover. Both 
intefferometers are being coordinated under the EUI=tOGRAV framework. 
A decision from all the relevant governments in Europe is expected in the 
summer of 1992. 

5.2 A W o r l d - W i d e  N e t w o r k  

All these projects are not in  competition with each other. On the con- 
trary, each of the projects is crucially dependent on the others. To sort out 
gravitational wave events from the ever-present noise background requires 
observation in coincidence of severM detectors. So two gravitational wave 
detectors are the absolute minimum to even prove the existence of gravita- 
tional waves. But to fully unravel the information contained in the signals 
with respect to the source direction, time structure and polarization requires 
a world-wide network of four detectors [33]. 

If all goes well, this network can be in place by the end of this decade, 
and at the beginning of the next miUeuium we may be able to mark the 
beginning of the age of Gravitational Astronomy. 
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A b s t r a c t :  The basic concept of an interferometric gravitationM wave detector, 
the realization of the long light path with optical delay lines or with Fabry-Perot 
cavities~ and the need for high light power are described. The techniques for im- 
proving the sensitivity, recycling and squeezed states of light, are considered and 
the consequences on the specifications of the optical components are shown. The 
specifications are explicitly given and particularly the influence of thermal effects 
is treated quantitatively. 

1 I n t r o d u c t i o n  

All realistic sources for gravitational waves that  have been thought of so far 
are expected to provide us with extremely small signals. The most  efficient 
emission of radiat ion from supernova core implosions or from coalescing 
binaries lasts only a few milliseconds, and for an event rate of several pe r 
month the strain in space introduced by gravitational waves (that  is a change 
in relative distance between testparticles) may  be on the order of only h = 
1 6 L 10-22. ~ - Z - ~  

As described in the contribution of K. Daazmann in this issue, a Michel- 
son interferometer is an adequate tool to look for such tiny strains. For an 
optimization of the sensitivity one has to optimize both  - the effective light 
path  L corresponding in some sense to the interaction time between the 
gravitational wave and the light inside the interferometer - and the resolu- 
tion for the path  difference $ L. With  techniques available today it should be 
possible to reach the required sensitivity level, as we will see in the following 
sections. 
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Fig. 1. Michelson interferometer with two mirrors M1 and Ms and a beam-splitter 
BS 

2 The long Light Path 

A gravitational wave passing the interferometer introduces a strain in space 
with opposite sign in two orthogonal directions. The path difference ~L to be 
measured in a Michelson interferometer is a maximum if the storage time of 
the light in the arms is matched to the period of the gravitational wave. For 
periods of milliseconds the optical light path is optimally of the order of 100 
km. In order to realize this long light path the light is sent back and forth 
in each arm several times before it is superposed with the other beam at the 
beam-splitter. The number of beams cannot be chosen very high, otherwise 
residual mirror motions like the thermally driven eigenmodes of the mirror 
substrate would limit the sensitivity of the antenna. An armlength of a few 
kilometers seems to be a good choice as a compromise between optimal 
performance of the interferometer and financial investment. 

In the prototypes of gravitational wave antennas built and tested in the 
past, two possibilities for realizing long light paths have been investigated: 
optical delay lines and Pabry-Perot cavities. 
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2.1 Fabry-Perot Cavities 

In optical cavities the many beams running between the terminating mirrors 
are all superposed to form one intense beam [1]. The far mirror is coated 
for highest possible reflectivity, whereas the transmission of the near mirror 
determines the effective path  length inside the cavity: 

£ 
(1) 

where £ denotes the mirror separation and T the power transmittance of 
the coupling mirror. Thus, the effective path  length inside the cavity is 
adjustable by the proper transmittance of the input  mirror. Ideally all of 
the light eventually goes back to the beam-splitter. Variations in path  length 
result in a phase shift which is detected by superposition with the light from 
the other arm. 

/ 
/ ( I 

Fig. 2. Michelson interferometer with Fabry-Perot cavities 

A cavity has to be designed according to the properties of the light 
beam, in our case a diffraction limited laser beam. Such a Gaussian beam 
is already determined by position and diameter 2Wo of its focus. The beam 
radius w is defined by the distance between the beam axis and the point 
where the intensity is e -~ of its maximum value. 

There is a characteristic length b, the so-called Rayleigh range, for each 
Gaussiaxt beam, defined by 

2~r 2 
b = -~Wo, (2) 
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Fig. 3. Wavefronts in a diffraction limited laser beam 

with A the wavelength of the light. The radius w in the radial intensity 
distribution 

2r 2 . 
Z =  Zo e x p ( -  ~-¢) (3) 

varies with distance z to the focus according to 

w = Wo 1 +  z (4) 

The equivalent relation for the radius of curvature Rw of the wavefront reads 
a s  

Rw=  1 +  . (5) 

b is the smallest radius of curvature of the wavefronts in a beam with focal 
diameter  2Wo, occurring at a separation of b /2  from the focus. 

A cavity can be formed by inserting mirrors in the light pa th  with a 
curvature of the surface equal to the curvature of the wavefront. The beam 
is then reproduced by the subsequent reflections. A possible arrangement  
could be a flat mirror  in the focus and a concave mirror  at a distance z ,  with 
radius of curvature corresponding to the last equation. The average beam 
size is smallest in a near  confocal cavity, that  is a symmetr ic  arrangement  
with radii of curvature close to the mirror  separation: 

For visible fight and kin-dimensions the beam size as defined above is a few 
cm. In order to avoid diffraction losses, that  is parts of the beam falling off 
the mirror  edge, one has to assign a space to each reflection by a factor S 
bigger in diameter  than  the beam diameter.  Usually S ~ 3 is assumed to be 
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sufficient. For more details see for instance the contribution of R.W.P. Dr- 
ever in [2]. 

2.2 Opt ica l  De lay  Lines 

The second possibility for a multireflection scheme to realize the long light 
path is an optical delay line [3]. Here the subsequent reflections are more 
or less well sepaxated from each other, and the light path is well defined 
as L = N~ with N the number of beams and ~ the mirror separation. 
The simplest case of a delay line is formed by twoequally curved spherical 
mirrors facing each other at a separation ~ equal to the  radius of curvature 
R. This is the so called confocal separation, as the focal points of the two 
mirrors coincide. 

i 
Fig. 4. Confocal delay line 

The beam usually enters the delay line through a coupling hole in the 
near mirror. The far mirror produces an image of the coupling hole onto 
the near mirror symmetrically to the optical axis. (The optical axis can be 
defined as the line connecting the centers of curvature of the two mirrors). 
This image can now again be considered to represent an object, which in 
turn is imaged by the far mirror into the coupling hole - independent of the 
position of the coupling hole and the orientation of the input beam. In order 
to get more than four beams, the mirror separation is changed by z~L As 
a result, the fourth beam is shifted with respect to the coupling hole by an 
amount proportional to Zig, hits the reflecting surrounding of the hole a n d  
starts a new round trip. For a particular value of Zig the beam falls into the 
coupling hole after N reflections. Usually the reflection spots are circularly 
arranged by a proper orientation of the input beam (see Fig. 5). 

The coordinates of the reflections at the mirrors obey the following equa- 
tions: 
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Fig. 5. Circular arrangement of reflection spots at one delay line mirror for N = 30 
beams 

/----F'-- 
x,, = ~o eos,~e + ~/ 2--~-~ (~° + Rx ' )  s inne  (7) 

~. = yo c o s n e  + ~2~_~ (vo + Rv'o)sin,~e (8)  

(xo,x~o) and (yo,yto) are position and slope of the input beam in x- and 
y-direction, respectively. 

In a circular arrangement  the subsequent reflections seem to be ro ta ted  
by O from one mirror  to the next, whereas the reflections at one mirror  are 
rota ted by 20.  {9 is defined in the usual way [3] by: 

cos e = 1 - ~ .  (9)  

(For the confocal mirror  separation we have 0 = ~r/2). The mirror sepa- 
ration can be chosen such that  after N reflections the beam arrives at the 
same spot where it entered the delay line, in our case the coupling hole. 
This is the so-called reentrance condition. It is fulfilled if NO is equal to an 
integer multiple of 2~r. 

Delay lines have some practical advantages: position and orientation of 
the output  beam are independent  of rotations and tilts of the far mirror.  
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Thus the interference quality is not spoiled by angular motions of that  mir- 
ror which may be kilometers away. For practical reasons it is sometimes 
desirable to have a well defined optical path length - for instance to tune 
the storage time to a particular signal frequency, or to equalize the light 
paths in the two arms in order to be less susceptible to frequency fluctu- 
ations. In a delay line the optical path is Ne; as the mirror separation is 
rigidly connected to the radii of curvature of the mirrors, it is given with 
the same precision as these. In a cavity the effective light path  depends on 
the reflection losses, and these are more difficult to control. 
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Fig. 6. Shape of the reflection spots in a delay line with minimal mirror diameter 

On the other hand, there is the disadvantage of the large mirrors needed 
in delay lines. In a cavity the mirror diameter D has to be chosen to be 
D = S-  2w with a safety factor S of at least 3. A mirror diameter of the 
order of 20 cm is therefore sufficient for cavities with kin-dimensions and 
light in the near infrared. 

In delay lines the different reflections have to be more or less well sep- 
arated from each other, the beam has to fit through the coupling hole and 
no light should fall from the edges of the mirrors. For the so-called matched 
case where all the reflection spots have the same size, the mirror diameter 
would become too big, especially for a large number of beams. The mirror 
diameter can be minimized if the diameter of the input  beam is reduced, 
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allowing for a smaller coupling hole and closer packed reflections, see Fig. 6. 
This minimal mirror diameter D is given by 

D = $2 + X/~v/~-L. (10) 
~r 

Thus, D depends only on the wavelength of the light and the total light 
path. For green light, a path length of 100 km and a safety factor of 3 the 
mirror diameter would have to be about 70 cm. 

A large mirror diameter is disadvantageous because of several reasons: 
the thermally driven eigenresonances of the mirror substrate come close to 
the frequency window of interest, and it is difficult to manufacture large 
mirrors with the required high quality (see below). For more details see for 
instance the contribution about delay lines and interferometric detection of 
gravitational waves [4]. 

2.3  S h o t  n o i s e  l imi t  

The long light path is one condition for optimized performance of an inter- 
ferometric gravitational wave detector. The other one is a good resolution 
of changes in path difference within the frequency window of observation. 
Provided the influence of all noise sources can be kept smM1 enough, the 
limiting noise source is the fluctuation in photo current as it is determined 
by the statistics of the light at the output of the interferometer. Conven- 
tional laser light at its best is described by Poisson statistics, leading to the 
well known v ~  law: if n photons are detected within a given resolution time, 
the uncertainty in that number is given by x/~. On the other hand, a signal 
related to a changing path difference increases proportional to the number  
of photons available. Therefore, the signal-to-noise ratio improves with the 
square root of the number of photons, that is with the square root of the 
laser power. The spectral density of the mean-square fluctuation in path dif- 
ference, simulated by the shot noise in an otherwise perfect interfcrometer, 
is given by 

hc 
S~L(f)- ~r uP" (11) 

Here h is Planck's constant divided by 2~r, c the speed of light, P the light 
power at the beam splitter and ~/the quantum efficiency of the photo diode. 
The spectral density is normMized to the bandwidth used; the units there- 
fore are m2/Hz. In order to get a linear measure, usuMly the square root of 
this quantity is given, with the unit m/x/-H~. 

Once a frequency window for observation is chosen, the relevant fluctu- 
ation in path difference can be obtained by integrating the spectral density 
of the noise over the frequency band in question. 

The strain in space simulated by the shot noise in a perfect interferom- 
eter with an optical path length L, an effective light power P,  an observa- 
tional bandwidth z2 f and green light is described by 
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~L 10_22 ( 5 0 k W  A f  ~1/2 100kin (12) 
/~ = l x  \ r/P ik-H-z] L 

This relation is valid for a path-length smaller than half a wavelength of 
the gravitational wave. A path-length of 100 km would be optimal for ms 
timescales. 

Discouraging is the huge light power of 50 kW oeeuring in the last rela- 
tion. It would drop to a more decent 50 W for the same strain sensitivity, if 
the frequency band of observation would be shifted from the region around 
I kHz to around 100 Hz, using an optical pa th  of 1000 km and a bandwidth 
of 100 Hz. The optimal choice of the paraxneters certainly depends on the 
characteristic timescales of the gravitational waves. Since signals occurring 
at a reasonable rate of about one per month  are expected to have an ampli- 
tude of 10 -21 at most, and since detailed information about the waveform 
of a gravitational wave is of basic scientific concern, one will try to improve 
the sensitivity as far as possible. There have been several proposals in the 
past, how one could proceed. 

All of the concepts are attractive in themselves, and have been proven 
to work in principle. But in order to work properly and reliably, they pose 
quite stringent demands on the quality of the optical components. 

3 Techniques for improved sensitivities 

Mainly three possibilities to improve the sensitivity of an interferometer are 
currently under investigation: power recycling, signal recycling and the use 
of squeezed states of light. 

3.1 P o w e r  r e cyc l i ng  

As we have seen in (11), a high light power sensing the relative position of 
the interferometer mirrors keeps the shot noise limit of the measurement 
process low. It seems therefore desirable to increase the Light power beyond 
the level provided by the illuminating laser. One possibility is to add up 
coherently the ou tput  power of several lasers. In order to run all the lasers at 
the same frequency, a small fraction of the Light of a well stabilized master  
laser is injected into the cavities of the other lasers; these lasers oscillate 
at the frequency of the injected light, if it is close enough to a possible 
eigenfrequency [5,6]. 

Another solution to the high power problem is to implement so-called 
power recycling. The idea b ~ n d  it is the following: The interferometer 
is operated at a dark fringe at the signal output  port. A fast servo loop 
maintains that  condition, and a signal appears as a voltage or a current ap- 
plied to the positioning elements. Ideally no light leaves through the signal 
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outpu~ po~c - i~ lea~ves ~he ia~t, e r femmeter  through t,he,, o,t,her ou~put~ por t  
towar'ds the'. laser. Am seen f rom ~,he laser, t~e in~,eKerom~er acts as a mir-  
ror. By ~ another  mirror  ( M a m  Fig. 7) betaveen t~he laser and  the  
iaterfemmeter)  a Fabry-Pero~ c a ~ y  is formed. 
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Fig. 7. Re~d ing  ~he Hght in an interferometer: mirror ~ for power recycling, 
mirror IVl~ for s~gna| r ecyc~g  

The  power-recycling cavity is tuned  to the laser frequency, and  the light 
power circulating inside the  interferometer  (and thus sensing the relative 
position of the  mirrors) may  be substantially increased if the  overall power 
losses A p can be kept small. The  power enhancement  G is given by 

P 
C = n---P" (13) 

G is the inverse relative power loss per  total  round trip inside the interferom- 
eter. Losses occur because of scattering, absorption, residuM transmission 
of the  mirrors, and poor interference. 
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3.2 S igna l  r ecyc l ing  

A similar argument holds for the second recycling technique. As just men- 
tioned, the interferometer is operated such that  in the absence of a signal all 
light leaving the interferometer ideally goes back towards the laser. Anal- 
ogously, light sent into the interferometer from the other side of the beam 
splitter leaves through the output  port on that side. The interferometer 
therefore also acts like a mirror if one looks at it from this side of the beam 
splitter. By inserting a mirror (M4 in Fig. 7) between interferometer and 
photo diode, a cavity for the signal is formed [7]. In generM, this cavity will 
have to be tuned to a frequency different from the laser frequency: the ef- 
fect of a gravitational wave is to introduce a time dependent strain in space; 
light being underway in a region underlying a time dependent strain in the 
direction of propagation can be considered as being frequency modulated 
- just as if the index of refraction would be modulated during the propa- 
gation through that  medium. Superposition with the reference beam from 
the other arm can be considered as a superposition of light of the original 
frequency - the carrier - and of light of a frequency shifted by the frequency 
of the gravitational wave - the sidebands. For the carrier the interferometer 
is still in its condition of giving a dark fringe at the signal output  port. But 
for the sidebands the interferometer is detuned and light is leaving towards 
the photodiode. Therefore the signal recycling cavity has to be tuned to the 
frequency of the sidebands. 

The position of M4 determines the resonance frequency, and the reflectiv- 
ity defines the bandwidth (together with the losses inside the interferometer, 
of course). In generM, for a very narrow resonance it is possible to resonate 
one sideband only. For broader resonance it may be possible to cover both 
sidebands by tuning to the carrier frequency. 

This technique allows to optimize the interaction time of a gravitational 
wave with the light, even when the light path in the interferometer arms 
is relatively short. It is therefore, for instance, not necessary to realize a 
light path of half a gravitational wavelength in each arm for opt imum per- 
formance; the longer light path may equally well be established by means 
of signal recycling. This fact helps to overcome the problem of too large a 
mirror size in delay lines. 

If the losses and wavefront distortions can be kept small enough, a very 
high recycling gain for the power and for the signal may be possible. A 
mult ipath scheme like delay lines or Fabry-Perots in the arms may no longer 
be necessary; the arrangement of Fig. 7 with four mirrors in total could be 
sufficient. A practical difficulty arises from the high light power which in 
this case has to be t ransmit ted through the beam-splitter. Thermal  lensing 
is then very likely to limit the performance of the system. For this practicM 
reason one will therefore choose at least a few bounces in each arm before 
the light goes back to the beam-splitter. 



221 

Signal recycling provides the possibility to track a signal of variable 
frequency, once it is detected and the subsequent shape is predictable within 
certain limits, like in the case of a coalescing binary. For these special sources 
this combines the convenience of broadband observation with the sensitivity 
of narrow band observation. 

A very important consequence of signal recycling is the ability to regain 
at least part of the light that otherwise would leave the interferometer be- 
cause of bad interference: this light is composed of other geometrical modes 
of the light-field than the fundamental one. The signal recycling cavity is 
tuned only to the fundamental mode; this field distribution builds up in- 
side. The other modes are not resonant and are therefore suppressed by a 
factor up to the reflectivity of the signal recycling mirror. Very high order 
modes, originating from surface deformations with spatial wavelengths much 
smaller than the beam diameter, lead to diffraction losses, which certainly 
can not be regained. 

3.3 Squeezed  s t a t e s  of  l ight  

What limits the sensitivity of measuring phase differences in a Michelson 
interferometer - provided all other spurious signals are reduced sufficiently 
- is the noise due to the statistics of the light hitting the photodiode. Light 
of an ideal laser is described by Poisson statistics. This statistics leads to the 
theoretical sensitivity limit defined by (11). Surprisingly enough, it is not 
the fluctuations of the illuminating light that limit the performance of the 
system. Fluctuations of the laser light may take place either in amplitude 
or in phase. Fluctuations in amplitude only show up at the output of the 
interferometer if there is a deviation from the dark fringe at the measure- 
ment output port. A dark output stays dark, even when the illuminating 
light varies in amplitude. 

A similar argument holds for the phase fluctuations of the laser light. In 
a~ interferometer phase fluctuations of the light give rise to a signal only 
if there is a path difference between the two interfering beams. For zero 
path difference, that is in the minimum of order zero, there is no light in 
the output, no matter which colour is used to illuminate the apparatus. A 
phase fluctuation is equivalent to a superposition of several frequencies, and 
thus on the zero order dark fringe no signal can be expected due to phase 
fluctuations in the illuminating light. 

Where does the noise in the output come from when there seems to 
be no relation to the fluctuations of the input beam? The crucial point 
is the beam splitter. As Carlton Caves has pointed out, the noise due to 
photon statistics at the output of the interferometer can be described as 
originating from the zero point fluctuations of the vacuum field entering 
the interferometer through the normally unused input port symmetrically 
to the input illuminated by the laser [8] (see Fig. 8). 
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Fig. 8. Vacuum fluctuations entering the interferometer as indicated with dashed 
lines 

These fluctuations are superposed with the light circulating inside the 
interferometer. The phase fluctuations are responsible for the uncertainty in 
the number of photons in the output ,  and the amplitude fluctuations give 
rise to the back action of the measuring process on the system via the time 
dependent differentiM light pressure on the mirrors. Caves proposed to send 
a particularly prepared state of the electromagnetic field into the second 
input port, replacing the usual zero point fluctuations, and thus reducing 
the fluctuations in the number 'of  photons at the output .  It is not necessary 
for this particular field to contain any real photons - it is sufficient to have 
less phase fluctuations than the vacuum field (or an ideal laser, which has 
the same uncertainty). 

A reduction of the fluctuation in the number of photons in the output  
is connected with an increased fluctuation in differential light pressure onto 
the mirrors. But with realistic light powers and masses of several hundred 
kilograms this effect is negligible. Squeezed states of light have been realized 
in the meantime, and even the performance of an interferometer has been 
shown to improve by a few dB using squeezed states [9, 10]. Unfortunately 
the technique of squeezed states is not yet ready to be used in interferometric 
detection of gravitational waves; it will take some time to make it reliable 
and to overcome all the effects that  tend to mal~e the photon statistics 
Poissonian again. 

The possible improvement of the sensitivity by use of squeezed states of 
light is limited by non-ideal conditions, particularly by losses, in a rather 
drastic way [11]. Equation (11) for a perfect interferometer can be rewritten 
a s  

 ¢min = 1/V , (14) 

where n is the number of photons sensing the position of the mirrors within 
the chosen resolution time. For an ideal interferometer the gmn in sensitivity 
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due to the application of squeezed light is proportional to the amount  of 
squeezing, 1 - e -8. In this picture s = 0 means no squeezing. An imperfect 
visibility V limits the possible improvement to 

6d?min= ([2(1-v)]l/2 + e-2s) 1[2 (15) 
n 

(The visibility is related to min imum Pmi, and maximum Pm~x output  power 
of the interferometer via V = (Pmax - -  Pmin)/(Pmax + P m i n ) ) .  

Thus, even for an arbitrarily high degree of squeezing the gain ill sen- 
sitivity would be limited to [2(1 - -  V)] 1/4. This means that an interference 
minimum of 10 -4, which seems to be an optimistic assumption as we will 
see soon, would allow a factor of 7 at most to be gained in sensitivity by 
utilizing perfectly squeezed light. 

4 Q u a l i t y  o f  t h e  o p t i c a l  c o m p o n e n t s  

There are several criteria that have to be fulfilled by the optical components. 
Some of them will be mentioned in the section 5.3 dealing with substrate 
materials. Here we will concentrate on the optical requirements. Most im- 
portant  is the request for low losses. Losses occur because of scattering, 
absorption and bad interference. We will now consider the losses introduced 
by a limited surface quality. 

4.1 Sur face  q u a l i t y  

The ideal shape of the optical surfaces, especially of the mirrors, is in most of 
the cases either a sphere or a plane. Deviations from the ideal shape deform 
the wavefront of the passing beam. Depending on the spatial wavclength 
A of these deformations, there are three regions to be considered: A larger, 
equal to, or smaller than the beam diameter. 

4.1.1 Aberrations 

Deformations of the mirror surface on a scale larger than the beam diam- 
eter are called aberrations. They lead to a displacement and a tilt of the 
beams inside the interferometer. In a Fabry-Perot cavity the beam can be 
readjusted by properly orienting the mirrors. In a two mirror delay line not 
all distortions can be compensated by mirror alignment, for instance the ef- 
fect of an astigmatism (that is different curvature of the mirrors in different 
directions). In this case the output  beam in general is shifted with respect 
to its ideal position in radial as well as in tangential direction. Only the 
tangential displacement can be compensated by adjustment of the mirrors. 
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The visibility at the output of the 3 km interferomcter can be kept better 
than 99%, if the error in slope of the mirror surface stays below 10 -7 radian. 
If more than two mirrors are used in each interferometer arm, then position 
and orientation of the output beam are adjustable as well. One possibility is 
the use of so called retro-mirrors (see Fig. 9), where the beam leaves the de- 
lay line through a second coupling hole, hits a retro-mirror perpendicularly 
and retraces its original path. 

Fig. 9. Delay lines with retro-mirrors 

There are several advantages of inserting a retro-mirror: for a given num- 
ber of beams the number of reflection spots is smaller than in a two mirror 
delay line and therefore the mirrors can be kept smaller, and the recycling 
schemes can be realized by inserting one mirror only, without the necessity 
of complicated reorienting the output beam for good superposition with the 
input beam. 
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4.1.2 Ripple 

Surface deformations with lateral dimensions in the order of centimeters are 
historically called ripple. In our case the beam diameter  is just  of that  mag- 
nitude. The main effect of a ripple on a reflecting surface is then to deform 
the wavefront. Computer  simulations have been performed for simplified 
conditions [12]: all surfaces and wavefronts have been assumed to be locally 
spherical, and deviations in curvature have been described by a deviation 
6s of the sagitta s at the mirror  (see also Fig. 10): 

w 2 

 -2R (16) 
where w denotes the beam radius and R the radius of curvature of the 
wavefront. In a near  confocal arrangement,  where the mirror separation 
equals the radius of curvature, the sagitta is only a fraction of a wavelength: 

A 
8 ~ --. (17) 

2~r 

2w 

I 
, 

/A 

"A 

Fig. 10. A locally spherical deformation of the mirror surface and the correspond- 
ing change in sagitta 

A reflection at a surface deformed by 68 spoils the relative min imum at 
the output  of an otherwise perfect interferometer to 

~ 10 .3 (18) 
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In a real setup there are deformations at each reflection. If we assume a 
statistical deformation of the relevant surfaces with a standard deviation Sd 

of the Ganssian - distributed surface amplitudes, then after N reflections 
the relative min imum at the output  deteriorates to 

~ 5 x 10 - 2  ( 1 9 )  p 

This relation tells us that  the wavefront deformation produced by reflections 
at a statistically deformed surface on the average grows proportional to the 
square root of the number  of reflections N, and the minimum deteriorates 
with N. If we assume 34 reflections, then the deviations of the optical com- 
ponents from their ideal shape on a scale in the order of the beam size has 
to stay below A/200 in order to allow a power enhancement by a factor of 
100 via power recycling. This is a fairly hard condition, as the beam size in 
the final detectors will be somewhere between 5 and 10 cm (depending on 
the particular layout), and the amplitudes of the surface irregularities usu- 
ally grow with the spatial wavelengths considered. Today's state of the art 
is very close to these goals. Deviations from an ideal shape for an aperture 
of 250 m m  have been measured with a lateral resolution of 1/2 m m  and an 
accuracy of a few Angstroms [13]. 

The demands on the surface quality at scales comparable to the beam 
size can be somewhat reduced if the technique of signal recycling is im- 
plemented (see the remarks in section 3.2 on signal recycling). Most of the 
light power leaving the interferometer through the output  port  is due to bad 
interference. It hits the signal recycling mirror and is sent back into the in- 
terferometer. But only the fundamental  mode is resonant; higher modes are 
suppressed corresponding to the reflectivity of the signal recycling mirror. 

4 .1 .3  M i c r o - r o u g h n e s s  

Surface deformations with spatial wavelengths A smaller than a few m m  
- that is the order of magnitude of the beam size for small optical setups 
- are named micro-roughness in the usual terminology. In the large scale 
interferometers the beam size comes close to 10 cm, and therefore we have to 
include surface deformations up to spatial wavelengths of a few cm. Micro- 
roughness is one of the most important  reasons for light scattering, and 
scattering is mostly the dominant loss mechanism in optical experiments. 
For a quantitative description of the scattering losses the quantity TIS (total 
integrated scattering) is used. It gives the fraction of light that  leaves the 
main beam by propagating into arbitrary directions: 

p -  (20) 
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It is exactly the microroughness that  defines the relevant surface deforma- 
tion in (20). If we require the scattering losses to be small enough to allow 
a recycling gain of a factor of 100 in an interferometer with 34 reflections, 
then the last equation tells us that  ~Srm, has to be kept below ~/730, that  
is better than a nanometer  for visible light. Within the last few years there 
has been an impressive progress in manufacturing high quality optical com- 
ponents. The tins-value ~Srms of the surface deformations for A smaller than 
a few m m  can now be kept well below one tenth of a nanometer. It is again a 
hard (but manageable) condition, to extend the range of spatial wavelengths 
up to the required few cm. 

4.2 C o a t i n g  

In order to minimize reflection losses, the optical components are coated 
with dielectric layers. The art of producing high quality coatings has been 
brought to a very high standard within the last few years. Mirrors for visible 
light are available with overall reflection losses of less than 10 ppm (parts 
per million), and an absorption of hardly measurable 2 ppm. For infrared 
light, mirrors with even better performance have been made. 

Some development work is still left to be done with respect to the size 
of the components involved. The very high quality mirrors made so far have 
a size of a few cm only, whereas for an interferometric gravitational wave 
antenna components with a size of several decimeters will be needed. Again, 
just as with the grinding procedure, it is more difficult to get extremely 
smooth surfaces up to spatial wavelengths in the decimeter region. As an 
example in Fig. 11 a scanline across a mirror used in the Garching prototype 
is shown, before and after coating, respectively. 

No a t tempt  has been made to produce a coating with constant thickness 
across the whole mirror, since only a circular area is used for the reflection 
spots. The coating therefore was done by sputtering from an off-axis ion 
source, while the mirror was rotated about its symmetry axis. As one can see 
from the pictures, the shape of the same surface (measured as deviation from 
an ideal sphere) looks totally different for the coated and for the uncoated 
case on a scale of several tens of nanometers. This is not surprising, since 
the overall thickness of the coating is about 5 micrometers, and a variation 
of 50 nanometers corresponds to a relative change of 1% only. 

4.3 D e n s i t y  f l u c t u a t i o n s  

Wavefront deformations do not only occur when the beam is reflected at a 
non-ideal surface, but  also when it is t ransmit ted through a not perfectly 
homogeneous material, one that  shows a gradient of the index of refraction 
across the light path.  These variations result from density fluctuations, inho- 
mogeneous distribution of the components composing the substrate, or from 
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Fig. 11. Scanlines across a mirror; dashed line: before and solid line: after coating 

temperature gradients (see the following section). In inhomogeneous mate- 
rials different parts of the wavefront will see different optical path-lengths, 
leading to a deformation of the wavefront. Fluctuations of the index of 
refraction therefore have the saa-ne effect on the wavefront as a deformed 
mirror surface. 

Just as in the case of surface deformations, the amplitudes of the fluctua- 
tions in the index of refraction grow with growing spatial wavelengths. The 
specifications for large scale interferometers are therefore harder to meet 
also in this respect. To give an example: The most homogeneous fused silica 
(a commonly used material for high quality optics) shows fluctuations of the 
index of refraction by 5 x 10 -7 on a scale on the order of decimeters, that 
is just the beam diameter in the large interferometers. The path difference 
between the beam axis and outer parts of the beam, as inferred by these in- 
homogeneities, may then be up to 5 x 10 -8 m for a 10 cm thick component, 
that is A/10 for green light. Such a wavefront deformation would drastically 
limit the possible power enhancement by power recycling (see for instance 
(18)). The difference in light path that different parts of the wavefront see 
on their way through the interferometer could at least partly be compen- 
sated for by properly shaped surfaces of the components or compensation 
plates. (It is planned to include this topic in a research and development 
contract with Zeiss, Oberkochen). In addition, as already mentioned, the 
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implementation of signal recycling also reduces the losses by bad interfer- 
ence. This statement holds in particular for the lowest order modes, that 
are preferrably produced by the density fluctuations, and that are most ef- 
fectively suppressed by signal recycling. But in any case the homogeneity of 
the substrates for the large antennas will have to be extremely high. 

5 T h e r m a l  e f f e c t s  

Absorption at the components also contributes to the losses inside the in- 
terferometer. It is not the loss of light that worries us. To allow a power 
recycling gain of 100, the relative loss at each of the assumed 34 reflections 
would have to stay below 300 ppm only. This is no problem, since an ab- 
sorption level in the ppm region is already possible. More severe axe the 
thermal effects produced by the absorbed light power: thermal expansion 
and thermal lensing. 

5.1 T h e r m a l  expans ion  

Let us consider a reflection at a mirror with an absorbing coating. For all 
relevant materials the heat will be removed by conduction rather than by 
radiation. The temperature profile and the related deformation by thermal 
expansion have been calculated [14], but the formMism and the results are 
somewhat complicated to handle. A good estimate of the effects in question 
can be obtained by the following consideration [12]: in a Gaussian beam 
most of the power is contained inside a circular area with radius w around 
the beam axis. Most of the heat produced at the reflection spot is there- 
fore Mso limited to that area. The heat is removed by thermal conduction 
into the substrate. The steepest temperature gradient occurs in the hemi- 
sphere inside the substrate with its center at the beam axis, and its radius 
equal to the beam radius. Eventually the whole substrate is heated (by a 
small amount), and radiates the power away. In the equation for the heat 
conduction the relevant quantities are: the absorbed light power P, ,  the 
heat conductivity n, the temperature drop 5T across the hemisphere, the 
area A = 2 r w  2 through which the heat is transported, and finally a, the 
coefficient of thermal expansion. 

P~, = n A  V T  ,~ n2~rw 2 5 T  , (21) 
w 

The temperature drop 5T causes the hemisphere to expand by 

5s ~ a w  5 T / 2 .  (22) 

A combination of the last two equations gives 
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heated area, is monitored with a position sensitive photodiode. Absorbed 
light powers on the order of 10 -7 watts are detectable. The Orsay and the 
Garching groups have used this technique to test their optical components 
p7,  18]. 

5.3 S u b s t r a t e  m a t e r i a l s  

The substrate materials have to meet several conditions. They have to be 
stable in shape, even on a scale of about one hundredth  of a wavelength 
over a scale comparable to the beam diameter. Nex.t, the mechanical quality 
factor has to be high, that  is the mechanical internal damping has to be small 
in order to concentrate the thermally driven motions to a narrow bandwidth 
around the resonance frequencies. The resonances in turn have to be kept 
weU outside of the frequency window of observation. In this way the tails 
of the resonances extending to the frequencies of observation can be kept 
smd l  enough. This topic is covered in more detail in the contribution of 
A. Rfidiger in this issue. 

The optical components should not be magnetic, even magnetic impu- 
rities have to be avoided, in order to exclude motions introduced by fluctu- 
ating electromagnetic fields. 

As stated in the last sections, for min imum thermal deformation the ratio 
between the coefficients of thermal expansion and thermal conductivity has 
to be small. If the beam is t ransmit ted through the substrate, then for 
minimum thermal lensing the absorption inside the material and the ratio 
between temperature  dependence of the index of refraction and thermal 
conductivity has to be small. 

There are several materials which meet the requirements. 

Table 1. 

material a / ~  ( lO-Sm/W) flln(lO-Sm/W) 
fused silica 33 1000 

ULE 4-2.3 850 

silicon 1.28 - 

sapphire 28 60 

diamond 0.13 1 

First of all, there are the materials normally used for optical applications, 
like fused silica, ULE and Zerodur. Unfortunately Zerodur, a special glass 
ceramic made for very low thermal expansion, is ruled out because of its high 
mechanical damping. Much better in this respect are ULE (also a material 
with low thermal expansion) and fused silica. They are possible candidates 
for mirror substrates. Despite their fairly strong thermal lensing, the very 
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low absorbing versions may be used for the beam-splitter or even for the 
coupling mirror of a cavity, as long as the light power is not too high. 

Components at which the light is only reflected and not transmitted,  
like delay-line mirrors or end mirrors of cavities, are allowed to be made 
from opaque materiMs. Silicon would be a very good choice: it has a high 
mechanical quality factor, is very unsusceptible to thermal deformation and 
can be made in large pieces. 

Sapphire also has a high quality factor and shows less thermal lensing 
than fused silica. But so far it cannot be made in large and very homoge- 
neous pieces. There are also problems related to its birefringence. 

Beryllium oxide would also be well suited, but it is not listed here because 
of the toxic dust produced during the grinding procedure. 

The ideal substrate would be diamond because of its extraordinarily 
high thermal conductivity. At present it is certainly unrealistic to count on 
that material. But slices of polycrystalline diamond with decimeter diameter 
and fractions of a millimeter thick can already be made. So it is not totally 
impossible that  at some time sufficiently large pieces of artificial diamond 
will be available. 

6 P e r f o r m a n c e  l i m i t a t i o n s  d u e  t o  t h e r m a l  e f f e c t s  

During the last few years an impressive progress in manufacturing high 
quality optics took place. It is therefore sound to assume that  the optical 
components of an interferometer can be produced with the required speci- 
fications to get an appropriate interference quMity. But, after all, the wave- 
fronts may eventually be deformed by thermal effects. In order to quantify 
their influence on the performance of an interferometer, computer simula- 
tions based on the simplified models described above have been carried out 
[12]. An interferometer with power recycling has been assumed. The im- 
plementation of signal recycling would improve (but also complicate) the 
situation somewhat. The order of magnitude of the effects becomes already 
clear in the plots of Figs. 12 to 14. Here the input  power to be delivered by 
the laser is plotted against the power circulating in an interferometer with 
power recycling. Figure 12 relates to an interferometer with a Fabry-Perot 
cavity in each arm, mad Fig. 13 describes a system with the same parame- 
ters, but with delay lines in the arms. In both cases Rayleigh scattering of 
200 ppm was assumed (as occurring in 10 cm of fused silica and green light), 
20 ppm absorption inside components traversed by the light, 34 reflections 
in each arm (or an equivalent finesse in the case of Fabry-Perots), 30 ppm 
total loss and 5 ppm absorption in the coating. The losses were assumed to 
vary between the different components or between the different reflections 
on the average by 10%. 
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Fig. 12. Required input power Pin as a function of the circulating power Pclrc in 
a thermally distorted interferometer containing Fabry-Perots in the arms. 
filled squares: all components made from fused silica 
filled diamonds: the same, but the thermal lens in the beam-splitter is compen- 
sated by a compensation plate down to 10% 
filled triangles: all components made from sapphire 
empty squares: the same, but compensation of the thermal lens in the beam- 
splitter 

The most critical point for Fabry-Perot  systems (Fig. 12) is the thermal  
lens in the coupling mirror,  produced by absorption in the coating which is 
exposed to the enhanced power inside the cavity. This explains the striking 
improvement from the curve with filled diamonds to that  with filled trian- 
gles, where the thermal  lens in the substrate is reduced by using sapphire. 
The thermal  lens in the beam-spli t ter  is of minor importance,  as its reduc- 
tion down to 10~0 by use of a compensation plate only leads from the curve 
with filled squares to that  with filled diamonds. 

Delay line systems (Fig. 13) are less susceptible to thermal  deformations 
than those with Fabry-Perots.  Here the dominating effect is the thermal  
lens in the beam-splitter;  its successively bet ter  compensation gives a cor- 
respondingly bet ter  performance,  as shown in the figure. Start ing with a 
fused silica beam-spli t ter  (filled squares), a compensation of the thermal  
lens down to 10% (filled diamonds),  a sapphire beam-split ter  (filled trian- 
gles) and finally a compensated sapphire beam-split ter  (empty squares) have 
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Fig. 18. I~equired input power Pin as a function of the circulating power Pclre in 
a thermally distorted interferometer containing delay-lines. 
filled squares: all components made from fused silica 
filled diamonds: the same, but the thermal lens in the beam-splitter is compen- 
sated by a compensation plate down to 10% 
filled triangles: fused silica mirrors and sapphire beam-spligter 
empty squares: the same, bug compensation of the thermal lens in the beam- 
spligter 

been assumed. The thermal expansion of the mirrors is of minor importance,  
as for all four lines mirrors made from fused silica have been assumed. 

Finally in Fig. 14 some optimistic assumptions have been made  as far as 
the materials axe concerned. But  they show that  even light powers of 100 kW 
at the beam-spli t ter  axe conceivable. The common parameters  for all four 
lines axe: Rayleigh scattering 200 ppm, absorption in the substra te  10 ppm,  
coating loss 10 ppm, coating absorption I ppm, 34 beams, a variation of the 
losses of 10%, and a compensation of the thermal lens in the beam-spl i t ter  
down to 10%. 

It should be mentioned that  Figs. 12 to 14 are based on green light. For 
infrared light the situation is still more promising, since the losses (scattering 
and absorption) usually axe lower there. 
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Fig.  14. Required input power P~ as a function of the circulating power Pdrc in 
a ~he~ma~Uy distorted in~erferometer. 
fi,~'ed triangles: a Fabry-Perot ~ystem made of sapphire 
f~led ~qu~ves: a delay-line ~ys~em with ~licon mirrors and s~pphire be2an-sp~tter 
empty ,squares: ~ Fabry-Perot system made of diamond 
filled d~monds: ~ del~y-line ~ystem made of dia~nond 

7' Stabi l izat ion o f  t h e  light 

For c-omptef_eness one should also mention the  optics that  is needed to sta- 
b.~lize the  laser light in frequencTy and in its geometrical properties, before 
it  is sent hato the  in~ter{erometer. 'The necessity for these kinds of stabiliza- 
t ion arises because fluctua~oas ha the  beam parameters produce spurious 
,~fio_,~n~s in connection with .small, bu t  pmcticaUy unavoidable a~dmmetl~es 
haside the  haterferometer~ 

7.1 F r e q u e n c y  s t a b i l i z a t i o n  

One cxn~p~c of such a mcdmnLsm is the signals produced by frequency 
fl~ctua~ons m connection w~th g p~th difference ZLL between the  interfci~ng 
~ .  The  fluctuations ~ ha phase diffenmce as simulated by the frequency 
noise ~ of the  light ~-e given by 

= ( 2 5 )  
C 
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The path difference AL depends on the level of symmetry between the two 
arms. As described above in Sect. 2.2, the path length L in a delay line 
is rigidly related to the radius of curvature of the mirrors. With existing 
technology one can hope to get the radius of curvature of the 3 km mirrors 
equal to about 10 -3. So with 30 beams one has therefore to expect a path  
difference of about 100 m. This path difference can in principle be made to 
disappear if retro-mirrors are used. But there is another effect which poses 
demands on the frequency stability in the same order of magnitude as the 
path difference between the mMn beams [4]: scattered light with a huge path  
difference with respect to the main beam and eventually interfering with it 
also leads to spurious signals. 

A small part  of the laser light is therefore sent to a stable Fabry-Pcrot 
cavity. The laser frequency is servoed to maintain resonance of the light 
in that cavity. Stable means in this context that  in the frequency window 
of observation of the interferometer the cavity mirrors are allowed to show 
very smM1 motions only. Even thermally driven motions at eigenfrequencies 
are too large. The frequency servo would then make the frequency follow 
these motions. The cavity is therefore either made rigid enough to have 
M1 eigenfrequencies above the frequency window in question, or uses sus- 
pended mirrors just like the interferometer. In a second stage the frequency 
is stabilized with respect to the light path  of the interferometer itself - the 
quietest reference we have. In practice this can be done by stabilizing the 
laser frequency to the length of the power recycling cavity. 

7.2 M o d e  c l e ane r  

Another mechanism for spurious signals to appear because of unstabilities 
of a reM laser beam are fluctuations in the beam geometry combined with 
proper asymmetries between the interferometer arms. A simple example is a 
lateral displacement 6y of the beam combined with an angular misMignment 
a of the beam-splitter. The path-difference simulated in this case is 

L = (26)  

To give a numerical example:  at the relevant frequencies the beam of an 
Argon ion laser shows fluctuations in beam position of about 10-1°m/x/~z.  
This would require the angle of mlsalignment to stay below 10 -9 radian - 
certainly not easy to fulfil, even for a servo system to maintain the align- 
ment. 

Similar relations hold for other kinds of beam fluctuations, for instaace 
a pulsation in beam width combined with differently curved wavefronts of 
the interfering beams. Spurious signals of that sort c~n be suppressed by 
inserting a so called mode cleaner between the laser and the interferometer 
[19]. This mode cleaner is essentially a non-confocal Fabry-Perot cavity, 
where the mirror separation is chosen to resonate only one eigenmode of the 
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electromagnetic field. Any fluctuation in beam geometry can be described as 
admixtures of other modes, which are not resonant in the cavity - they are 
not transmitted, they are reflected. The transmitted beam in consequence 
fluctuates in power - but power fluctuations are made ineffective in the 
signal output anyhow by use of a nulling method. 

Besides mode cleaners, single mode fibers have also been used in the 
prototype experiments to suppress geometrical beam fluctuations. In addi- 
tion, it is easier to handle position and orientation of the beam when fibers 
are used. But so fax no fibers have been produced to stand more than one 
Watt of transmitted single-mode light power. For higher laser power it will 
therefore be necessary to use mode cleaners again. 

8 Conclus ion 

The specifications for the optical components in a large baseline interfer- 
ometric gravitational wave detector are at the limits of the well advanced 
technology today: surfaces smooth to better than 10 - l°  m on a scale of up 
to a few centimeters; on a larger scale the deviations of the surface shape 
with respect to an ideal sphere have to stay in the nanometer region. The 
losses, particularly the absorption, are tolerable only at a level of a few ppm. 
The beam-splitter, and particularly the coupling mirror of a Fabry-Perot, 
have to be made of extremely homogeneous and pure materials. Tests and 
first results have shown that the problems are manageable. 
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Abs t rac t :  In order to measure the tiny effects of gravitational waves, strains in 
space (i.e. relative changes in distance) of as little az 10 -2a or even less have to 
be detected, at frequencies ranging from 100 Hz to several kHz. 

Large laser interferometers are the most promising approach to reach such extreme 
sensitivities. This 'straightforward' road is, however, obstructed by a multitude of 
effects that cause (or fake) such fluctuations in distance. Among these are seismic 
motions, thermal vibrations of optical components, pressure fluctuations of the 
residual gas in the vacuum tubes, and fundamental effects such as Heisenberg's 
uncertainty relation. 

What all of these noise sources have in common is that their effects can be reduced 
by the choice of sufficiently large arm lengths. This is what dictates the (very ex- 
pensive) choice of arm lengths of 3 to 4 km in the currently proposed gravitational 
wave detectors (USA, D-GB, F-I, AUS, JAP). 

Introduction 

0.1 O b j e c t i v e  o f  t a l k  

This is the third in our series of four tMks on laser interferometric grav- 
itational wave detection. The other talks are presented by G. Sch£fer [1], 
K. Danzmann [2], and W. Winkler [3]. 

This talk will address the limitations in sensitivity imposed by mechani- 
cM noise of various kinds. It will discuss the origin of these noise sources and 
the methods to reduce them or suppress their effects. In particular, it will 
make clear why the long arm lengths envisaged are an absolute necessity. 
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0.2 L a y o u t  o f  t a lk  

The talk will be divided into three parts. A first part will set the scene, 
briefly recapitulating astrophysical background, proposals, basic parame- 
ters, appropriate representation of noise, and it will introduce our noise 
"yardstick", the shot noise. 

The second part  will treat what can be termed the "internal noise " 
sources, of rather fundamental  nature: Heisenberg's uncertainty relation, 
thermal vibrations, and index fluctuations of the residual gas in thermal 
equilibrium. 

And only then will the third part discuss the mechanical noise that  one 
would normally think of first: seismic vibrations, as an example of "external" 
noise sources, and the ways to cope with them. 

This sequence was chosen to be able to cover the very important  topic 
of seismic isolation more broadly, and to be able to include a series of in- 
vestigations that  had just recently been performed. 

1 S e t t i n g  t h e  s c e n e  

1.1 A s t r o p h y s i c a l  B a c k g r o u n d  

The talk of G. Sch£fer treated the most likely sources of gravitationM ra- 
diation, and agMn recalled how extremely small their strain amplitudes, h, 
are. Let us just repeat in a few words the conclusions about the two main 
candidates for detection: supernovae and coalescing binaries. One should, 
however, keep in mind that  each new observational window on the universe 
has brought totally unexpected discoveries, and we expect that  the same 
will come true also in gravitational wave astronomy. 

1.1.1 Supernovae 

Burst sources such as supernovae, are rare events, and to wait for one of them 
to Occur in our own galaxy, the Milky Way, may take a normal physicist's 
working life. For a higher rate of events, perhaps a few per month,  we 
would have to look as far out as the Virgo cluster, to a distance of more 
than 10 Mpc. 

Carefully performed ab initio calculations of the collapse processes [4] re- 
veal that a rotationally symmetric collapse (at a distance of 10 Mpc) cannot 
be expected to produce peak strain amplitudes of more than 1 0  - 2 2  . Calcula- 
tions of similar reliability have not yet been performed for non-axisymmetric 
scenarios, but it is hoped that such cases might have up to an order of mag- 
nitude higher signMs. 

We conclude, therefore, that  for burst sources a design sensitivity of 
10  - 2 1  is the absolute minimum requirement, and clearly an upgrade to 10 -22 
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must remain a long term goal. The typical frequency range for.burst sources 
is the region from a few hundred hertz up to a few kHz. 

1.1.2 Coalescing binaries 

The other most likely source of gravitational radiation is the spiralling to- 
gether of close binaries composed of highly condensed partners: neutron 
stars or - even more efficient - black holes. 

The rate at which such events are to be expected is somewhat controver- 
sial; the statistics of such binaries is still very sparse. The general opinion is, 
however, that the rate is so low that a coverage of the universe even deeper 
into space than the Virgo cluster is required, perhaps as far as 100 Mpc. 

The signal of such coalescing binaries would consist of a quasi-continuous 
wave of slowly rising frequency (a 'chirp'), and also of slowly rising ampli- 
tude. The signals are difficult to detect until they come into the range of, say, 
100 Hz. Within a few seconds, the evolving coalescence will reach frequencies 
of 200 Hz, and then only fractions of a second until final splash-down. 

A sensitivity of 10 -22 (already taldng into account the longer observa- 
tion time) is the design goal for such coalescing binaries, and being able to 
measure down to, say, 100 Hz becomes even more important here. 

1.2 T h e  p roposa l s  

The presentation of K. Danzmann gave an overview of the proposals made 
worldwide for building such laser-interferometric gravitational wave de- 
tectors of sufi~icient sensitivity. Even though some of the design details 
may differ between the three most advanced designs (GEO [5], LIGO [6], 
VIRGO [7]), there are some features that are very similar. 

The most notable (and noticeable) common feature is the proposed 
length of the interferometer arms: 3 km each in VIIIGO and GEO, 4kin 
in the wealthier and less populated United States (LIGO), and again 3 km 
in the Australian design [8] and the more recent Japanese concept [9]. 

This important design parameter, the arm length ~, turns out to be the 
major cost factor; the cost of civil engineering and of the vacuum sys tem 
is approximately proportional to the length ~, and they make up close to 
70 % of the total cost. Thus, a reduction in arm length would cut down the 
detector cost considerably. 

There have been suggestions from various researchers on how one could 
build interferometric gravitational wave detectors having much smaller di- 
mensions, perhaps even of 'table top' size. One main objective of my talk 
is to state the physical facts that rule out such possibilities. The choice of 
arm lengths in the order of 3 km is not a reckless use of taxpayers' money, 
nor an attempt to build impressive monuments for posterity, but rather 
it is governed by physical necessities, if the dream of a gravitational wave 
astronomy is to become true. 
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The suggested solutions of smaller sized detectors usually concentrated 
on how one can (or hopes to) defeat one particular noise effect, but  then 
typically disregarded the other noise sources that also dictate the choice of 
long (kin-sized) arms. 

1.3 Basic parameters 

In this subsection we will define some of the variables that  will be used 
repeatedly in the sections to come, and give their typical range of values. 

Of particular concern will be the arm length g, i.e. the geometric distance 
between the mirrors in each of the interferometer arms. When we discuss 
optical delay lines as proposed in the GEO project, the total optical path  L 
is given by multiplying g with the number of passes, N : 

L = g t .  (1) 

In GEO, in order to obtain light travel times ~- = L / c that are appropriate 
for kHz signals (T = 0.3 see), the totM path L needs to be in the order of 
100 km, so with g = 3 km we would need N ~ 30 passes in the delay line. 

In LIGO and VIRGO, long light storage times are realized with Fabry- 
Pero~ cavities. The sensitivity with which gravitational wave signals can 
be detected is determined by the phase sensitivity, d~P/dg, and we see the 
finesse ~- play a similar r61e as the number of passes, N, in the delay line. 

More recent ideas, such as the concept of "signal recycling" [10], make 
the distinction between the delay line scheme and the Fabry-Perot scheme 
less pronounced. 

The various noise sources will be described with the specific GEO con- 
figuration in mind, but most of these are easily extrapolated to the con- 
figurations of LIGO and VIRG0.  As will be seen, many of the effects can 
be discussed without having to make very specific assumptions about the 
particular design. 

1.4 Noise  R e p r e s e n t a t i o n  

The noise types to be treated here are all broadband, and of stochastic 
nature. A stochastic noise variable v(t), of, say, dimension in meters, is then 
best represented by the spectrM density (of the square) of the fluctuating 
variable, a n d  it has become customary to give the linear spectral density 
denoted by 

b'(f), of dimension [m / V~z] (2) 

such that the rms value in a given frequency band A f  = fu -- ft is given 
by 

1 

vrms = ~ ( f )  d f  , again of dimension [m]. (3) 
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It is important  to keep in mind that  the goal is to detect gravitational 
radiation in a frequency range that  does not necessarily extend to very low 
frequencies. 

In most cases in the following, we will assume a relatively large band 
width A f  of the interferometer, i.e. on the order of the median frequency 
f for which the interferometer is optimized. When a choice of A f  has been 
made, the sensitivity obtainable can be expressed as a function of the desigrt 
frequency f .  It is this type of representation that  is chosen for plotting the 
noise contributions in Figure 1, where a bandwidth of A f  = f / 2  is assumed 
throughout.  The figure, taken from [5], also shows a rough indication of the 
magnitude of the expected signals. 

1 .5  S h o t  n o i s e  - t h e  l i m i t  ? 

As is well known, the existence of shot noise gives rise to a very fundamental  
limit in sensitivity. The traditional representation is that  shot noise fakes 
a fluctuation in phase of the measured output  signal, or2 , in other words, 
an apparent fluctuation in total path  length difference, 6L, as expressed in 
Equation (11) of W. Winlder's contribution[3]. When, as we will do here 
throughout,  we express the noise as the attainable strain h, we find for the 
shot noise 

hsN,~,2.4X 10_21 [ CI 0 1-1'2 [ .L ]-1 [ f 13/2 
L5owJ tTEff .z j , (4) 

where ~ is the quantum efficiency of the detector, I0 is the laser output  
power, and f is the center frequency of the burst. It is noteworthy that  
this limit does not depend on the choice of the arm length/~, but  rather on 
the total pa th  length L = N[,  regardless of how this is realized by the two 
factors N and [. 

In W. Winkler's contribution, the consequences of shot noise have been 
made quite clear. Even for obtaining our more modest goal of h < 10 -21 at 
1 kHz, a light power of close to 1 kW would be required (of highly stabilized, 
single mode light); and for the eventual goal of h < 10 -22 a truly prohibitive 
value of almost 100 kW. No light source (laser) of such high power, which 
also satisfies all the other requirements, is anywhere in sight. 

Fortunately, the light power inside the interferometer can be enhanced 
considerably by what is known as power recycling. The interferometer out- 
put is measured in the dark fringe of the interference. If for the moment  we 
neglect the non-zero interferometer minimum, all light that  is not lost due to 
the finite reflectivity loss, ( l - R ) ,  will be available for recycling (re-injecting) 
into the interferometer. The longer the arm length [, the fewer passes N in 
the arms are required. This reduces the light loss due to the mirrors, and 
thus allows better power recycling. In this way, the strain sensitivity might 
reach best values of as little as 
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Fig.  1. This figure, taken from the German-British proposal[5], compares the 
strengths of two typical burst sources with the noise limitations imposed by the 
most prominent noise sources. For signals that  allow observation over several os- 
cillation periods, the effective amplitude herr is approximately h xfn-~,  where h is 
the true amplitude and n is the number of cycles of the waveform over which the 
signal can be integrated. 
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/ 5 0 w ]  5  6=5 , (5) 

and we see that the sensitivity hsN improves (i.e.: drops) with the square 
root of the arm length & 

So, even before we get to the actual mechanical noise sources, we find 
that our "measuring stick", the shot noise limit, is dependent on the arm 
length ~. In Figure 1, the heavy line denoted 'Photon Noise' assumes the 
design length of ~ = 3 kin. The sensitivity would deteriorate (the line would 
move upward) if arm lengths shorter than 3 km were chosen, jeopardizing 
the detection of such events as those indicated in Figure 1 : supernovae and 
coalescing binaries. 

1.5.1 Squeezed light 

A way around the shot noise limitation could be found if non-classical states 
of light were to be used in the interferometer. Caves [11] pointed out that 
the photon counting noise in an ideal interferometer can be interpreted as 
stemming from the ground state vacuum fluctuations entering through the 
unused input port of the interferometer. 

If one succeeded in replacing them by a specially prepared light of partic- 
ularly small phase fluctuations, the photon counting noise could be reduced 
considerably. Such squeezed sta~es of light have successfully been generated, 
but their usage in gravitational wave interferometers is still not in sight. Fur- 
thermore, the gain in signal-to-noise ratio will be very limited, as is pointed 
out in the contribution of W. Winkler [3]. 

2 I n t e r n a l  M e c h a n i c a l  N o i s e  

2.1 T h e  H e i s e n b e r g  U n c e r t a i n t y  P r inc ip l e  

The indeterminacy in the simultaneous measurement of the position x and 
the associated momentum p, ,  as expressed in Heisenberg's uncertainty re- 
lation 

Z~xZ~p~ > h/2 ,  (6) 

gives a lower limit down to which a measurement of the current mirror 
displacement ~g is possible. One easily derives a (squared) spectral density 

8h 
"~2 '~ mwZ ~2 (7) 

and, again with A f  = f / 2 ,  we arrive at a sensitivity as shown in Figure 1 
by the dotted line marked 'uncertainty principle'. From (7) we see that the 
linear sensitivity limitation is inversely proportional to the arm length ~. 
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The straight line is still safely below the  heavy polygon that ,  as we will 
see, determines the  sensitivity limitation of the  GEO design. This is reas- 
suring, and it is one of the  great  advantages of the  interferometer  detector  
over the resonant bars. Unlike in resonant bars (when we want  ~o achieve 
even the more  modest  goal of  10 -21), there is no necessity here to resort  to 
such hard-to-realize schemes as "quantum non-demolition" or ~badc-action- 
evading" . . .  unless one wants to cut  down on a rm length. We clearly have 
here another  good argument  for km s ~  arms. 

2.2 T h e r m a l  N o i s e  

But things become worse if we consider yet other  noise: contributions. Let 
us take, as another  important  ex~.mple, and also a very fundamenta l  one~ 
thermal  vibrations. This example, too t has the advantage tha t  its discussion 
needs no assumptions about  the actual  experimental  implementation.  

2.2.1 Internal thermal mot ion of  mirrors 

The thermal motion in the test masses introduces a vibration of the  ~ -  
rot  surfaces that  - for each relevant mode - can be described by a simple 
harmonic oscillator, of resonant frequency So = Wo/(2~r). The  d a m p ~  is 
normally assumed to be proportional to velocity, and  can be expressed by 
the quality factor Q. The (linear) spectral density of these motions can be 
wri t ten as 

1 

( f )=  \Mw~/  Q 1 -  ~oo + Q  ~o , (8) 

with a frequency dependence of the square bracket as shown in Figure 2. It 
is obvious tha t  we do not want the resonant peak at fo to occur inside our 
frequency window of interest, since such a peak would have noise signals 
that  are many  orders of magni tude above the signal we want to measure.  

We have to make sure that  all resonant modes of the ~ o r  substrate 
are well above our signal-frequency window. We then have to consider only 
the unavoidable low-frequency tails of theses modes, each of which has a 
white noise ~dth a spectral density of 

1 l 

= \ ~.3pv3 Q / (9) 

Even with favorable assumptions , M = 400 ks, a high mechanical Q of 
106 (silicon), a resonant frequency of fo = 3 kHz, and a bandwidth  of 
A f  = 1 kHz, we get a (~ of 10 -19 m. Considering the number  of mirrors 
and relevant modes involved, a total thermal motion of 10 -18 m seems a 
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reasonably safe upper  estimate, and from this we deduce that  we can get 
near the required goal of 6~/~ = 10 -21 only with arm lengths ~ of a few 
kilometers, say, 3 km. 

In order to avoid the relatively low frequencies of the bending modes, 
the substrate aspect ratios (thickness over radius) will be chosen close to 
unity. It is interesting to note that  the white noise of (9) then becomes 
independent of the size of the mirror substrate, the length dependencies in 
M and w ~ cancel each other. 

Expressing the noise as a (squared) strain spectral density, 

(io) 
~2 ~ ~ p v ,  3 Q ~ '  

and again using the bandwidth A f  = f/2 and a safety margin of 2.5 to 
take into account the presence of several modes, we find a sensitivity that  
is shown in Figure 1 as the dot ted line marked 'Thermal  Noise (internal 
modes)'.  We can clearly see that  for the materials assumed one can just 
barely keep below the shot noise limit at low frequencies, whereas we have 
a rather comfortable margin at higher frequencies. 
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2.2.2 Choice of materials 

A look at (10) gives us some indication about what characteristics of sub- 
strate materials to look for. The velocity of sound, vs, enters very strongly, 
more so than the specific weight p. Many substrate materials have much bet- 
ter figures of p v 3 than fused silica, and at the same time also better quality 
factors Q. Silicon and sapphire (both already available in rather large single 
crystal ingots), would both have good characteristics, even better (because 
of sound velocities vs above 10 kin/see) would be beryllium (toxic !), and 
- better yet - beryllia and diamond. Beryllia crystals have so far been a 
militarily classified material, so not very much is known about large spec- 
imens. Diamond is being grown by novel processes now, but so far only in 
thin layers (up to 1 mm). These alternative materials also have advantages 
in their thermal properties which make them less susceptible to problems 
associated with heating due to the light beam, as discussed in W. Winkler's 
contribution [3]. Only the future can tell whether these ideM materials will 
become available in the sizes required. 

2.2.3 Table top interferometer ? 

What if we wanted to attain the same sensitivity with a short interferometer 
of, say, 1 m in length ? Let us look at the second expression in Equation (9). 
Not very much more than a factor of ten can be gained via the factor p v 3, 
so for more drastic improvements we would have only the parameters T and 
Q to play with, both entering under the square root. 

We could cool the substrate, by six powers of ten, to T = 300#K. This 
certainly is not an a~tractive solution: One would have to make sure that the 
vacuum system as a whole is even colder than the mirrors, unless we want 
our top quality mirror surfaces to trap the residual gases. But worse yet, 
this scheme is impossible: Even assuming mirror coatings with absorption 
losses of only 0.1 ppm, i.c. ten times less than the best ones made today, the 
dissipation on the mirror surfaces could be radiated away only at substrate 
temperatures of, say, 10 K. Trying to remove the dissipated light power 
by heat conduction is hard to reconcile with the high demand on seismic 
isolation. 

We could hope for materials with higher Q. The fused silica which we 
consider for our mirrors is already a material of very high Q (Q ~ 105), but 
some better materials are known, particularly if one cools them down to or 
below liquid helium temperatures. Pure single crystal sapphire is known to 
have an extremely high Q, perhaps up to something like 109. So with the 
combined efforts (and huge expenses) of sapphire end masses and cryogenics, 
one might marginally get to the required 6 powers of ten. But with that we 
have defeated only one enemy, although admittedly a very prominent one. 
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2.2.4 Thermal motion of pendulums 

A very different regime of the resonant curve of Figure 2 applies when we 
consider the thermal noise of the pendulum suspension. Here the resonant 
frequency of the 'pendulation mode' is way below our frequency range of 
measurement, and only the high-frequency tail enters. The sensitivity limit 
due to the suspension noise is then determined by the noise spectral density 

16 k (11) 
mQs 4e2" 

At higher frequencies, its contributions are negligible, but not so at fre- 
quencies around 100 Hz. This is seen, again with our GEO specifications 
in mind, from the dotted (and partly heavy) line marked 'Thermal Noise 
(suspension)'. For this line, the very favorable assumption of a pendutation 
Q of as high as 10 s was assumed. 

Such a high Q is not only difficult to obtain, it is also extremely difficult 
to measure or verify. The Q gives the number of oscillations after which 
the amplitude of the motion has fallen by a factor 1/e. At a period in the 
order of 1 second, l0 s oscillations will take about 3 years. Not only would 
a measurement be stretching the patience of the experimenter, also any 
seismic influences that might add to (or subtract from) the present state of 
oscillation must be strictly avoided. 

Values of Q up to 107 have been measured [12]. Although some groups 
have proposed to measure the decay more directly (by going to yet lower 
frequencies) the Q assumed here is not a well-established figure, but rather 
one that can be derived by physical arguments, considering the heavy end 
mass, and the very tiny area (near the top of the suspension wire) where 
any dissipation is to be expected. 

As we see from Figure 1, this suspension noise already affects the attain- 
able sensitivity, so clearly any reduction in arm length will increase the noise 
limit, with the inverse of L No reduction Can be afforded, particularly not 
if detection is intended to reach into the frequency range of 100 Hz. Partic- 
ularly for the VIRGO project, with its declared aim of measuring down to 
frequencies below 100 Hz, this suspension noise would pose a serious prob- 
lem. 

2.2.5 'hnaginary spring constanU damping 

Recently, the question of how best to represent mechanical damping has 
been looked at more closely by P. Saulson [13] and others. These researchers 
have proposed (and observed) a different damping law, and it is not unlikely 
that this law also applies to the mechanical systems we are dealing with 
here. Rather than describing the damping by a velocity-proportional term 
in the differential equation, it is described (in the frequency domain) by 
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an imaginary (and possibly frequency dependent) component in the spring 
constant k: 

k = ko [1 + (12) 
Such a modified friction law will not influence the characteristics of the 
seismic isolation very substantially, but it does have serious implications on 
thermal noise. In the standard damping model the thermal displacement 
noise of the mass, as shown in Figure 2, has the same shape as the transfer 
function of the harmonic oscillator; this is because the oscillator is driven 
by a 'white' random force. This case is plotted as the solid line in Figure 3. 
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Fig. 3. Thermal noise spectrum of a harmonic oscillator : for velocity-proportional 
damping (solid curve) and for 'imaginary spring constant' damping (dashed 
curve), Q = 100, after Saulson [13]. Linear spectral densities as in Fig. 2. 

In the case of the ' imaginary spring constant '  damping, however, the 
thermal driving force turns out to be frequency dependent, and the spectrM 
density of the thermal noise rises towards low frequencies, but falls off more 
rapidly above resonar~ce [13]. This is shown as the dotted line in Figure 3. 

If this modified damping law turns out to be a better description, then 
the subresonant tedls of the substrate vibrations will become a greater prob- 
lem. In Figure 1, this would make the right-hand line named 'Thermal noise 
(internal modes)'  shMlower, and higher at the low-frequency side. The line 
could then possibly slightly exceed the shot noise curve in the deep trough 
where photon noise crosses the suspension noise. 

If this loss mechanism applies to the pendulum suspension, the 'above- 
resonant'  roll-off in Figure I will become even steeper, relaxing the require- 
ments for the suspension's thermal noise. This fact would help the VIlZGO 
project at low frequencies. 
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2.3 Re f rac t ive  index  f luc tua t ions  in t h e  res idua l  gas 

The light will travel between the mirrors in highly ewcuated tubes, but 
local changes in the number of molecules remMning in the light path will 
lead to fluctuations in the refractive index. This changes the optical path 
between the mirrors without actuMly changing their positions. 

Sudden changes (only these would cause signMs in our frequency range of 
interest) could be caused by local gas eruptions from the tube walls, and even 
more so from the surfaces of the pumps, particularly getter pumps. A recent 
research program at PTB in Berlin is making headway in investigating these 
phenomena at the pressures and time scMes that £re of interest here. 

An estimate of the lower bound of the refractive index noise can be made 
by treating the residual gas as being in thermodynamic equilibrium. Each 
single molecule traversing the beam of width 2w will retard the light phase 
by an amount that depends on the relative field strength at its location. 
By averaging over all possible positions and flight directions (and thus in- 
teraction times), assuming a Maxwell distribution of the molecule velocity 
v, and weighting with the (ganssian) field strength, one can calculate the 
autocorrelation function R(T) of the effect of these atoms. It was a pleas- 
ant surprise that the analytical treatment, after many integrations of higher 
transcendental functions (Dawson's integral, modified Bessel functions) of 
complicated arguments, finally led to the simplest autocorrelation function 
imaginable, a Lorentzian of the form 

1 
R ( T ) -  1 Jr I, /~ ~2' (1.3) 

where the mean interaction time ta is given by tR = V~ W/Vm arid where the 
thermal velocity Vm stands for the "most probable velocity" Vm = ~/~-k-T/m 
in the Maxwell distribution 

4 v e_(V/,,,..)2 (14) 
V~Vm 

The autocorrelation function R(r)  leads to a (sin#e-sided) power spectral 
density equMling twice the Fourier transform, 

F s ( f )  := 2 = ± .e-Z o (15) 
oo fc " 

For frequencies well below the 'cut-off frequency' fc = 1/(2zrt~) the 'vacuum 
noise' (15) is almost frequency independent (white). With the usual GEO 
characteristics, we find the (squared) strain noise to be 

(p) (16) ' 
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where no and v0 are the refractive index and the mean velocity of the gas 
in question, mud No is the number of molecules per unit volume at s tandard 
pressure p0 : (2.7 x 1025 molecules/m3). 

The fluctuations (16) determine the maximum allowable gas pressure 
p for a given strain sensitivity h. To be on the safe side, the vacuum 
specifications for GEO were laid down as: < 10 -8 mbar for hydrogen and 
< 10 -9 mbar for heavier molecules, such as water and nitrogen. This leads 
to the line marked "Vacuum Noise" in Figure 1. 

The beam width 2w is a function of arm length ~? and wavelength A, 
w ~-, ~ ,  so in the end we find h to be proportional to £-3/4, and for 
any arm length g below 1 km, the vacuum specifications would have to be 
tightened beyond what can be done at reasonable cost. 

Thus, also the effect of index fluctuations gets reduced by the choice of 
a longer arm length, mainly due to the better 'averaging' over the longer 
beam length £ a~d the wider beam diameter 2w. 

3 S e i s m i c  I s o l a t i o n  

The third part  of this tMk deals with the motions of the ground at the 
site of the interferometer, a noise that is generally termed 'seismic', even 
though it is not necessarily and exclusively of geophysical origin. Discussing 
the efforts required to suppress noise due to these seismic motions (see also 
N. Robertson [14]) will again bring to our attention how extremely small 
the gravitational wave effects axe that we want to measure. 

3.1 Seismic noise 
3.1.1 The frequency range 

We will have to cope with seismic noise over a wide frequency spectrum, a 
few kHz at the high end, and down to semidiurnal tidal deformation of the 
eaxth's crust, or even seasonal variations, at the low end. 

Although the gravitational waves are to be measured in a rather limited 
frequency band only, from, say, 100 Hz to a few kHz, it is nonetheless nec- 
essary to consider the effects due to high-amplitude motions (slow drifts) 
at the extremely low frequencies. They can make the interferometer deviate 
too far from its ideal point of operation. 

It takes a wide spectrum of measuring devices to cover this vast fre- 
quency range:  (piezo-type) accelerometers for frequencies from kHz down- 
waxd to 10 Hz; seismometers (mostly velocity-proportional, dip-coil) from 
100 Hz down to 1 Hz, in astatized seismometers down to 10 -1 Hz; and strain 
measurements (mechanical and laser-interferometric) between two measur- 
ing points down to seasonal and secular variations. 
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3.1.2 T h e  m o d e l  

For the purposes of designing a seismic isolation system, it has become 
customary to model the seismic motion of the ground by a (linear) spectral 
density of the displacement 

m 
= m , ( 1 7 )  

which describes the frequency dependence quite well over a wide frequency 
spectrum, certainly from kHz downward to, say, the microseismic frequen- 
cies at ~ 10 -1 Hz. This equation represents a w o r s t  c a s e  motion at the sites 
being considered, at very quiet sites the amplitudes might be by a factor of 
ten lower. 

3.1.3 Site selection 

It is quite naturM that in selecting a site for the experiment one will not 
want to pick a particularly noisy place. Man-made noise arising from traffic, 
industry, agriculture, etc. contributes most strongly in the frequency range 
from a few Hz up to, say, 100 Hz. Sufficient distance (one to severM kin) 
from busy roads, railroad tracks, heavy industry, mining, (and more than 
10 km from military artillery ranges) must be guaranteed. 

Coastal regions have strong ground noise contributions from the surf 
and swell of the sea. The microseismic phenomena, on the other hand, and 
in particular the 'microseismic storms', at frequencies of 0.1 to 0.15 Hz are 
believed to stem mostly from the swell of heavy sea, and to travel far into 
the mainland. There is no obvious way to escape from them, at least not 
inside Europe. 

If one excludes the obviously unappropriate sites, the ground noise (in 
the range from 1 Hz to 100 Hz) still shows a wide variation depending on 
the geological formation. 

In an earlier series of measurements, Steinwachs [15] had established that 
the seismic noise increases monotonically with the height of loose rock or 
scree above bedrock. Furthermore, the man-made noise propagates mainly 
as a surface wave, and its amplitudes drop rapidly as one goes far enough 
(at least 10 m, better 100 m) below surface. 

Such arguments have again raised the interest in below-ground sites, and 
particularly into tunnels driven into hard bedrock. With modern techniques, 
the additional cost over surface installations no longer seems prohibitive. 
Sites in (seismologically stable) mountain ranges in the German state of 
Niedersachsen are being considered, and recent seismic measurements [16] 
in abandoned mines there have established their excellent usefulness. 
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3.1.4 Isolation required 

The degree of isolation required depends on the design parameters of the 
detector: the sensitivity hD aimed at, the design frequency f ,  and the band- 
width Af .  

From the rather steep roll-off of the ground motion, Equation (17), and 
from the fact that all methods of isolation improve with frequency, we can 
expect that isolation at higher frequencies must be a relatively easy job. 

Let us take as a first example a modest design sensitivity of hD = 10 -21 
at f = lkHz, A f  = 500Hz, and g = 3km. The rms ground motion in 
this band is about Xrms = 2.5 • 10 -12 m. With z~ mirrors involved in the 
measurement, we see that even for this case a suppression of the ground 
noise by 10 powers of ten is required to arrive at hD = 10 -21. 

For the more ambitious goal of hD = 10 -22 at 100 Hz, A f  --_-- 100 Hz, we 
find Xrms = 1.6.10 - l° ,  so we need a suppression by 13 powers of ten, which 
is much more difficult, particularly at these lower frequencies. 

The next sections will give some examples of isolation methods with 
which one can hope to achieve these suppression values. 

3.2 I so la t ion  by pendulums 

3.2.1 Single pendulum suspension 

The simplest way to isolate a mirror from high-frequency ground motion 
is to suspend it as a pendulum by one or several thin wires. The method 
chosen at Garching was to hold the mirror by a thin steel wire sling, as 
shown schematically in Figure 4. 

The damping is typically very low for such a suspension system, partic- 
ularly if care is taken to avoid friction at the lift-off point of the wire from 
the mirror, as well as at the suspension point. 

The typical frequency response of the mirror motion ~'(f) for a given 

'ground' motion E(f) of the suspension point, the transfer function ~r(f)  = 
~(f)/E(f), is given by the simple resonant curve of the shape already shown 
in Figure 2. At frequencies well above the pendulum's resonant frequency 
fp, this transfer function (also called transmissibility) rolls off as ( f p / f ) 2 .  

For reasonable wire lengths /p, on the order of I m, the resonant fre- 
quency is near 

fp = 05H . (18) 

Although at 1 kHz we then have a transmissibility of less than 10 -6, this 
still falls short of even our modest goal of a reduction by 10 -1°. Much longer 
pendulums are not practicable, and they could never provide the missing 
four powers of 10. 
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3.2.2 Wire  resonances  

Another obstacle in reaching the desired suppression is the fact that the 
suspension wires are not massless and thus have their own resonances. The 
high amplitudes at these resonances are transformed (though reduced by 
the mass ratio # / m  of effective wire mass # to mirror mass m) into motions 
of the mirrors. 

The wire pendulum can be treated in close analogy to an electrical trans- 
mission line terminated with an inductance (to represent the inertial ter- 
mination by the impedance Zp = iwm of the pendulum mass m). The 
characteristic impedance Z = mvf~-ff~ of the mechanical transmission line is 
given by the tensile force mg on the wire and the linear mass density 7. The 
propagation constant k = w/Vtr is determined by the velocity Vtr = 
with which a transverse motion propagates along the wire. 

As in an electrical transmission line, the displacement xp at the termi- 
nation (pendulum mass) is transformed to the front end (suspension point) 
via a transformation 

x o = X p  ( Z P i s i n k l + c o s k l ) ,  (19) 

and one arrives at the transfer function 

xp 1 
H ( f )  := - -  = . (20) 

x0 cos kl - ~ sin kl 

The gravest resonance wp = ~ (the pendulation mode) and the low- 

frequency transfer function H(f )  = (1 - ( f / fp)2)  -1 are easily derived by 
expanding for kl << 1. All further resonances (the 'violin string' resonances 
fn) can be found from the approximation kI ,~ nTr, leading to 

f~ ~ nTr fp ~ / ~ ,  (21) 

with ~t = 7" l the mass of the wire sling (two wires). 
Figure 4 shows the suspension system used in the 1986 Garching proto- 

type [17], and the theoretical and experimental transfer functions. For the 
values used (m = 1.1 kg, steel wire 0.1 mm in diameter), the mass ratio m / #  
is about 12 500, and the wire resonances are in very good agreement with 
the measured peaks at multiples of fl  ~ 212 Hz. At these frequencies, the 
pendulum suspension not only loses its isolation feature, it even enhances 
the motion of the pendulum over that of the ground. 

In between these resonances, the transfer function H( f )  provides an 
isolation that is at best 

z fPV/-   
H( f )  ~, - -  - (22) 

W//~ f ' 
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Fig.  4.  Top: Schematic view of a (double) pendulum suspension, am in the Garch- 
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Bottom: The curves a and b are the measured and cMculated transfer functions 
for a one-stage pendulum, e and d for two stages. 
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i.e. it rolls off only with 1/f. With the above values and at, say, 550 Hz one 
finds an isolation by about 10 -5 . 

3.2.3 Local control 

The high quality factor Q of the pendulum has the undesirable consequence 
of a very high resonant peak (see Figure 2). Using a pendulum with increased 
friction (and thus lower Q) would not be an ideal remedy. For the mirror 
mass, a low Q would be unacceptable from the thermal noise considerations 
of section 2.2.4. But also for an intermediate mass in a double pendulum 
system (see section 3.2.4), assuming simple velocity-proportional damping, 
the desirable feature of a roll-off with (fp/f)2 is valid only up to a frequency 
fQ ,~ Qfp, from then on the further roll-off goes only with the inverse of f .  

There is, however, a way to combine a shallow resonant peak with the 
desired f -2  roll-off. This is a frequency-selective damping incorporated in 
what we call 'local control' servos [18, 17]. This feed-back control measures 
the relative position of the mirror via a rather crude technique (a shadow 
sensor) and feeds back a low-passed control signal via coils that act on 
permanent magnets attached to the mirrors and/or  the intermediate masses. 
The control currents are manipulated such that they damp the pendulum 
mode, but at higher frequencies leave the f -2  roll-off untouched. 

These coil-and-magnet controls, now widely used in several prototypes, 
serve also other purposes, e.g. in very-low frequency control and for optical 
alignment. 

3.2.4 Double pendulum 

We demonstrated that a single pendulum caxmot provide sufficient suppres- 
sion even to satisfy our less ambitious goal of 10 -~1 at I kHz. An obvious 
approach is to use multiple pendulums, in the simplest case a two-stage pen- 
dulum. This is what was implemented in the Garching 30-m prototype. A 
schematic view of this suspension scheme is shown in Figure 4. The simple 
"wireless" model would give a straight ( fp/ f )4  roll-off. This would lead to a 
suppression by better than 10 -13 at I kHz, but such values are not reached 
in a more realistic model. 

The calculation of the transfer function including the wire resonances is a 
straightforward extension of that for the single pendulum. The comparison 
of the experimental and theoretical transmissibilities is given by the two 
lower curves in Figure 4. Again, rather good agreement is found, also in the 
kink in the roll-off, which (in the valleys between the resonances) is expected 
to go with f -2 .  

The wire resonances limit the suppression that we can reach, and al- 
though the two-stage pendulum was found sufficient for the 30-m prototype, 
for the large projects a much better seismic isolation will be needed. 
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3.2.5 Vertical motion 

One severe draw-back of wire pendulums is that  their vertical isolation is 
inferior to the horizontal one. This is easily understood when we consider 
the resonant frequency for the tensile vertical motion, 

i 
A = 

where Al is the elongation of the wire length Ip due to the weight of the 
suspended mirror, and when we compare this with the horizontal pendu- 
lation frequency of Equation (18). The elastic, reversible regime for most 
wire materials will not go much beyond strains Al/Ip of 1%. So the vertical 
resonant frequency fv is at least one power of 10 higher than the horizontal 
resonance. Above this resonance, a single pendulum will be about two pow- 
ers of ten inferior in its vertical isolation, a double pendulum four powers 
of 10. 

This shortcoming of the wire pendulum is, fortunately, not as dramatic 
as these numbers suggest, since the interferometer is in first approximation 
insensitive to mirror motions transverse to the optical axis. 

There are, however, several mechanisms that  may convert vertical mo- 
tion into horizontal changes in mirror distance. A very fundamental  one is 
the finite radius of the Earth. The vertical motions of the mirror spaced 
3km subtend an angle of 0.5mrad, 0.5.10 -3, and it is this factor by which 
vertical motions (pointing to the center of the Earth) are converted into 
longitudinal distance variations. 

There are many structural features that can also transform vertical~ or 
tilting, motions into horizontal ones. In all cases, the conversion factor will 
be quite small, typically perhaps in the order 10 -2 , but this just about 
compensates the inferior vertical isolation of a single pendulum stage. The 
vertical motions are not an unsolvable problem, but they must always be 
kept in mind in the design of the isolation system. 

3.2.6 Multiple pendulums, VIRGO 

A very ambitious scheme is being developed (and being tested) for the 
VIRGO project. The aim of this project is to be able to measure at even 
lower frequencies than 100 Hz. This makes achieving a good seismic isolation 
even more important  (as well as more difficult). 

The mirror masses are suspended by a chain of seven pendulums in series, 
with a total height of about 7m, the total vacuum chamber towering 12m. 
The individual stages axe made from air springs, and they have vertical 
resonant frequencies that  come quite close to the ones of the horizontal 
( 'pendulation') modes. This is an important  advantage over wire pendulums. 
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The roll-off with f-14 has been verified over a limited frequency range, 
and very impressive transmissibilities have been measured. Only a very sen- 
sitive interferometric measurement will be able to establish how good the 
transfer function is at higher frequencies. This 7-stage pendulum system is 
expected to come close to, but not yet quite reach, the very mnbitious iso- 
lation specifications for VIRGO. The addition of an 'inverted pendulum' at 
the top of the 7-stage pendulum seems to be provide the required additional 
isolation. 

3.3 I so la t ion  v ia  lead-and-rubber stacks 

3.3.1 Stacks 

As we have seen, the double pendulum cannot sufficiently isolate the mirrors, 
even for the relaxed goals of h ~ 10 -21 at 1 kHz. There is, however, the 
possibility additionally to isolate the suspension point via stacks made up 
of alternating layers of heavy (e.g. lead) bricks and a soft, elastic material 
(e.g. rubber or elastomers). Such stacks have been used very successfully 
in the seismic isolation of resonant bar gravitational wave antennas where 
very impressive seismic isolation values have been achieved. Such stacks have 
been used in interferometer prototypes at Glasgow and later at Caltech, and 
are now being implemented in the Garching 30-m prototype. 

Stacks of such alternating layers have some features that are similar to 
those of the multiple pendulums. The more stages one uses, the steeper is 
the roll-off at frequencies sufficiently above the highest resonant mode of 
the stack. (This highest mode, incidentally, is the mode in which the heavy 
layers have alternating direction of motion). 

3.3.2 Damping of stacks 

Unlike the (multiple) pendulums, the stacks are typically systems of rela- 
tively high internal losses,/, e. of low Q. Values of Q between 1 and 10 are 
typical. An immediate consequence of this low Q is that the roll-off goes 
with f - n ,  where n is the number of stages, and not with f -=n as in the 
case of multiple pendulums. 

Although the steeper roll-off with f -2n  would be more desirable, it would 
not outweigh the advantage of having the elastic layers made out of a very 
lossy material. One could easily achieve the high compliance (the 'softness') 
for instance with metallic coil springs, but these would, at higher frequencies, 
have their own internal resonances, entirely ruining the stack's isolation 
characteristics. 
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3.3.3 RAL stacks 

A set of lead-and-rubber stacks was designed by Rutherford Appleton Lab- 
oratories, to be tested and used in an upgrade of the Garching 30-m proto- 
type. 

Boundary conditions in the design were the inner diameter (1000 ram) 
and the limited free headroom in the Garching vacuum tanks. A top plate 
(from which the double pendulum system is suspended) is supported by 
four stacks at the four corners. The stacks can have up to five stages and a 
total height of 86 mm. 

Each lead brick has a mass of 4 kg. The rubber springs are cylindrical, 
25 m m  in diameter and 40 m m  high (unloaded). There are four such rubber 
'springs' in each layer between two lead bricks, at each of the four corner 
'substacks'. 

The bricks have cylindrical recesses of half the brick's thickness so that  
the bricks are supported in the plane of their center of mass. This is to avoid 
that tilting motions convert into horizontal displacements. 

Measurements of the transfer function (the transmissibility) performed 
at RAL are shown as the solid curve of Figure 5. These measurements were 
made with vertical driving forces acting on the stack's bo t tom plate. The 
'gravest' (i.e. the lowest) resonance, at about 6 Hz, was below the frequency 
range covered at RAL. The total number of peaks (4) is identical with the 
number of stages. 

The roll-off at frequencies above, say, 40 Hz is quite steep, and a sup- 
pression of 10 -4 was reached at about 70 Hz. 

3.3.4 Transmlssibillty of stacks 

Using a simple one-dimensional model of such stacks, assuming rigid metal  
bricks, with elastic, lossy rubber springs in between, one can derive a re- 
cursive scheme with which 0he can easily calculate the transmissibility for 
any given number of stages (n). The stages need not be identical, and some 
dependence of the rubber compliance on the total load can also be incorpo- 
rated. 

The dotted line in Figure 5 shows the computer calculation of the 
transfer function, taking the mass (4 kg) and the specified vertical stiffness 
(22 N/ram, or a compliance of 0.045 m m / N  for a single rubber spring). Only 
the loss factor, or the Q, was fitted, such that the height of the resonant 
peaks was similar to the measured data. Quite good agreement is reached 
for the values of the resonant frequencies as well as for the roll-off. 

Numerical tests were made with the two different damping laws already 
discussed in 2.2.5. There was some influence on the relative height of the 
gravest resonant peak as the number of stages was increased: they were 
of equal height for the ' imaginary spring constant '  case, but  dropped with 
rising n under the 'velocity-proportional' law. 
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Fig. 5. Transmissibility (for vertical motion) of 4-stage RAL stack: RAL measure- 
ments (solid line) and MPQ model calculations (dashed line). Transmissibility is 
down to 10 -4 at about 70 ttz. 

The influence of the damping law on the roll-off was not substantial 
in the frequency range of Figure 5; the superior suppression of the 'imagi- 
nary spring constant s case would become manifest only at somewhat higher 
frequencies. 

3.3.5 Garching stack measurements 

A set of four RAL stacks was used in one Garching end tank to support  the 
top frame used for pendulum suspension. The four bot tom plates supporting 
the four stacks at each corner can be driven (with a swept sine) in horizontal 
or vertical direction by four low-voltage piezo vibrators (PI P-844.20). 

Piezoelectric accelerometers measured the spectra of the horizontal mo- 
tion at the top frame and at the piezo-driven bot tom plate. The quotient of 
these values gives the transmissibility. Typical measurements are presented 
in Figures 6 and 7, in both cases for horizontM motion. 

The seismic isolation even of a stack having only three stages, as shown in 
Figure 6, was found fully sufficient for the present Garching 30-m prototype. 
Therefore it was decided to use them in the current upgrade in all three 
tanks. 
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Fig. 6. Horizontal transmissibility of a-stage I~AL stack at Garching, in the fre- 
quency range from 1 to 100 Hz. The resonant frequencies ere near 2, 8, and 11 tlz. 
The heavy horizontal line marks unity transfer function, the spacing of the hor- 
izontal lines is a factor of 10 each, the transmissibility is down to 10 -s at about 
80 Itz. 

3.3.6 Acoustic bypass 

Figure 7 shows the frequency range from the lowest resonance (near 2 Hz) 
up to about 100 Hz. The observed data  (resonant frequencies, roll-off) were 

i n  good agreement with the expected behaviour, and they nourished the 
hope that  the roll-off would continue to higher frequencies. This was not 
the case, but  rather  a resurging curve (shown in Figure 7, upper curve) was 
observed, rising almost towards unity again at 1 kHz. 

This behaviour is difficult to explain from the elastic properties of the 
rubber springs, and some observations pointed to acoustic coupling through 
the air. The measurements  were repeated in vacuum. This took some exper- 
imental effort: preamplifiers for operation in vacuum and avoiding crosstalk 
between the feedthroughs and leads of the high-power piezo drives and the 
(low-voltage) accelerome'ter signals. 

The results were convincing: with the tank evacuated, the rise at fre- 
quencies above 100 Hz disappeared. This is shown in the lower curve of 
Figure 7. Intuitively, one would not have expected the heavy lead bricks to 
be so strongly excited by acoustics in the air. 

But still the results were not fully satisfactory, as the transfer function 
seemed to level off at something like 10 -6 at best, rather  than continuing 
the steep roll-off. This behaviour is not yet fully understood, but  the stack 
investigations had to be broken off for the moment  as all three vacuum tanks 
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Fig. 7. HorizontM transmissibility of 3-stage RAL stack at Garching, in the range 
from 10 Hz to 1 kHz, measured in air (upper curve) and in vacuum (lower curve). 
Isolation is down to 10 -4 at about 60 Hz, and in vacuum reaches 10 -s in a fre- 
quency range from 150 to 500 Hz. 

axe now used for instMling an upgrade of the 30-m prototype. It is hoped 
that  the stack tests will be resumed soon, in a dedicated test tank. 

The results of the stack measurements, although incomplete, were quite 
encouraging. Suppression factors of 10 -5 and even 10 -6 are readily achieved 
even with a three-stage stack. Inside the frequency range up to 200 Hz, a 
further improvement with the number of stages can be predicted, the GEO 
specifications can no doubt be readily met. 

One further important  feature of stacks is that  they can easily be made 
to have vertical isolation of similar quality as the horizontM one; or an 
even better  one if one wants to make up for the shortcoming of the wire 
pendulum. 

At higher frequencies it will yet have to be determined whether the 
measured levelling off in the transfer function is a physical effect of the stack 
structure, or whether it is an artefact in the very delicate measurement.  But  
in any case, the specifications are not at risk, as the ground motion according 
to (17) rolls off with f - 2 .  
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3.4 U l t r a - l o w  f r e q u e n c i e s  

3.4.1 Seismic noise at ultra-low frequencies 

There are various causes for very slow drifts in the distance between points 
as far apart as our arm lengths (i.e. 3 kin). Most prominent examples are 
the lunar and solar tides of the solid earth, but there are also seasonM and 
meteorological fluctuations. 

Above frequencies f t  = vs/~, determined by the velocity of sound Vs 
in the ground and the arm length g, the motions at the two end points 
can be regarded as uncorrelated. This frequency f t  is of the order of 1 Hz. 
For drifts at much lower frequencies, the relative motion 6g is given by the 
low-frequency strain in the ground multiplied by the arm length. 

These slow drifts are not inside the frequency range of measurement,  
but their effects need to be suppressed nevertheless. This is so because their 
relatively large swings could drive the interferometer far out of its proper 
point of operation. 

For an example, let us consider the diurnal tides of the solid earth. 
Although the strains are quite small, in the order of a few 'nanostrain' ,  i.e. 
strains of a few 10 -9, this is, after all, twelve to thirteen powers of 10 larger 
than the gravity-wave signals we want to measure. The frequency, on the 
other hand, is only some six to eight powers of ten lower than our GW signal 
frequencies. 

3.4.2 Dynamic range of control elements 

Large low-frequency swings have grave consequences for the application of 
control signals, These have to do with the finite "dynamic range" of such 
control elements. 

The first limitation (and the most fundamental one) is due to the elec- 
tronic noise in the control amplifiers, say the current drivers for the coil- 
and-magnet control elements. 

Typically, low-noise amplifiers have a noise current that  is at best ten 
powers of 10 below the full current. A control element designed to compen- 
sate drifts up to 1 m m  will thus introduce a displacement noise in the order 
of 10 -13 m at low frequencies, and even including the reduction of this noise 
due to the inertial mass of the mirror, this will still be several powers of 10 
above the noise allowed when we want to measure strains of h = 10 -21 or 
better. 

An important  consequence of this is that  the control signals compen- 
sating the slow large drifts are not allowed to be applied to the mirrors 
themselves, but only to a stage higher up, say to the intermediate mass in 
a double pendulum system. A control system along these lines is just being 
investigated at Garching. 

A second limitation arises because the coils of the coil-and-magnet sys- 
tems are mounted to masses that  in themselves are not totally quiet, that  
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in some cases will have the full seismic noise of the ground. The coil-and- 
magnet systems can bc operated such that  the force exerted on the magnet 
is in first order independent of the position of the coil. But in the case of 
large low-frequency swings, this optimM point of operation cannot be main- 
rained. Recent investigations have led to configurations of the coils in which 
Mso the second derivative of force with position vanishes. Such coils allow 
much larger swings, and they will be incorporated into the current upgrade 
of the Garching prototype. :"  

4 C o n c l u s i o n  

It has been demonstrated that  mechanical noise of various kinds can impose 
serious limitations on the sensitivity of interferometric gravitational wave 
detectors. In particular, the discussion has shown that in order to cope with 
these the arm length has to be chosen on the order of a few kilometers. 

But a large arm length alone is no guarantee for success. Each of the 
noise sources discussed will require special attention and will call for an 
optimM design of the relevant parts of the detector. 

In experiments On various prototypes the world over, and in detMled 
design studies, the feasibility of a gravitationM wave detector with strain 
sensitivities of 10 -22 or even 10 -22 has been demonstrated. This is why 
applications for funding of the large detectors can no longer be considered 
premature,  they reflect the high state of the art already achieved. 
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Fermion and Boson Stars 

Norbert Straumann 
Institute for Theoretical Physics, University of Zurich 

1 In troduct ion  

In this first lecture I shall make a few scattered remarks on fermion and bo- 
son stars. We shall start with simple qualitative considerations based on the 
uncertainty and exclusion principles. These lead to rough estimates for the con- 
ditions under which heavy atoms, white dwarfs, neutron stars and rnini-boson 
stars collapse. Some of these estimates can be turned into rigorous bounds when 
a semirelativistic Hamiltonian provides an appropriate description. It is then 
also possible to give a rigorous justification for a semiclassical treatment (e.g. 

la Thomas-Fermi). This is good to know, because in situations when general 
relativistic effects become important (neutron stars, mini-hoson stars) there is 
no other approximation scheme available. 

As a preparation to the talks by Neugebauer and Herold I shall also give an 
introduction to the mean field approach for obtaining an equation of state for 
neutron star matter at very high densities. 

Very recently we have constructed topological boson stars for the non-linear 
sigma model of Skyrme. I will briefly discuss their structure and the results of 
the stability analysis which we have just finished. (Black hole solutions for the 
same model will be described in my second lecture.) Finally I will make a few 
remarks about gauge boson stars and their instability. 

Historically, our subject has a long tradition. It is very remarkable that the 
quantum statistics of identical particles found its first application in astrophysics. 
In the same year when SchrSdinger discovered his equation Fowler realized that 
"the black-dwarf material is best likened to a single gigantic molecule in its lowest 
quantum state" and he developed the nonrelativistic theory of white dwarfs. 
It was afterwards recognized independently by several people [Frenkel (1928), 
Stoner(1930), Chandrasekhar(1931), Landau(1932)] that relativistic kinematics 
weakens the quantum mechanical kinematic energy (zero-point pressure) to the 
extent that there is a limiting mass for white dwarfs. (For a brief historical 
discussion and references I refer to [1].) 

Many of the considerations and methods in the first part of my talk can 
already be nicely illustrated for atoms. Let me show this for the problem of 
stability (collapse condition) of a heavy neutral atom. 

Consider first the non-relativistic Hamiltonian including all Coulomb inter- 
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actions 
1 g N Ze 2 .--., e 2 

g NR = ~ ~ p~ - ~ -- + )_~ . (I) 
~=1 Ixd ,<j I~q - x j l  

With the help of the variational principle one can find a rigorous upper bound 
for the ground state energy So(N) of the form (N = Z) 

Eo NR < -cz~/~ ,~2md, (2) 

with 
C > 0.447. (3) 

(For details see the Appendix in Ref.[2]. I recall also that  the Thomas-Fermi 
approximation gives Eo Na ~ -0.77ZT/aa2rnc2.) 

We make now the unjustified but interesting assumption that  the dominant 
relativistic effects can be described by the following semi-relativistic Hamiltonian 

N 

Hn = ~ ~p~c 2 + m2c 4 + 11, (4) 
i=1 

where the potential energy V is the same as in (1). The ground state energy 
Eo R of H n can be bounded in a useful manner by Eo ~R, as has been noted only 
q ~ t e  recently [2]. Indeed, from ( a l / 2 -  bl/~) ~ _> 0 for ~ = (p~2 + ~ c ~ ) / 2 ~  and 
b = rhc2/2 we obtain the operator inequality 

Ha < 1NThc 2 + 1 m2c 2 NR _ ~ g - - ~ -  + H (m ~ 7h), (5) 

for any 7h > 0. From this and the bound (2) it follows that  

Eoa(N) < ~[1Nc2 - GNT/Za2c 2] + 
l_gm2E 
~. ~ . (6) 

Since rh can be arbitrarily large, collapse will occurs if (N  -- Z): 

1 Z4/3a2 > ~-~, i.e. for a > 1.05Z -2/3. (7) 

A similar method can be used for white dwarfs and boson stars (see Sect.2). 

2 S e m i r e l a t i v i s t i c  f e r m i o n  a n d  b o s o n  s t a r s  

I begin with some remarks on white dwarfs (WD), which have in recent years also 
at t racted the attention of mathematical physicists. It was shown in particular 
by Lieb and Yau [3] that the Chandrasekhar theory is the limit of quantum 
mechanics as the number of electrons N --* c~ and the gravitational constant 
G -+ 0 in such a way that G N  2/3 remains constant. A corresponding result has 
also been established rigorously for boson stars. 

For WD's we can ignore general relativistic effects, except for stability con- 
siderations close to the critical mass for gravitational collapse. Mat ter  in a WD is 



269 

completely ionized. The Coulomb forces estabhsh local neutrality to a very high 
accuracy. For this reason the Coulomb interactions play energetically almost no 
role. (The corrections can be estimated and are on the few percent leveL) The 
spatial distribution of nuclei and hence their momentum distribution is much 
the same as those of the electrons. Therefore, the ground state energy of a WD 
with N electrons and Nz nuclei with charge Ze and mass mz can be estimated 
as follows 

IN2 2 P 
Eo(N) ~ min{Nx/p 2 + m 2 - ~(-~) Gmz N--'iT"~}, (8) 

where we have made use of the Pauli principle for the contribution of the gravi- 
tational energy. (The average momentum p of a particle satisfies p > N1/3h/R, 
where R is the radius of the star, because there can be at most one electron in 
a de Broglie cube (~t/p)3.) The minimum in (8) exists only for (mz = ANN): 

GmN 3 2  Z 2 
N < N t := (2-~-~c)- / ( ~ ) .  (9) 

For the ground state the momentum and energy are, respectively, 

mc(~)2/311 g 4/3 2 1-, (10 / po 
- - j  

Eo(N) ~ Nmc211-(-~f)4/311/2. (11) 

For N > N I the expression in the curly bracket of (8) is not bounded from below, 
since in the extrem relativistic limit it becomes N[1 Iv 4/3 - (~7) ]pc. Therefore, the 
system collapses for N > Nf. The mass Mf corresponding to AT/ gives the 
following estimate of the Chandrasekhar mass 

-~-mz M~, Z 2 Mch (12/ 

where Mpz is the Planck mass. In the Chandrasekhar theory the prefactor in the 
last expression is replaced by the number 3.1. 

Before I say what has been shown rigorously about this limit, I want to 
make it clear that  the Chandrasekhar theory is just the Thomas-Fermi theory~ 
for the WD, considered as one big "atom" with about 10 s7 electrons. Indeed, 
the Chandrasekhar equation can also be obtained as follows. Let ~v(r) be the 
local Fermi energy for the electrons. The potential energy per electron in the 
gravitational potential (p, satisfying 

A~ = 41rGp (13) 

(p=matter  density), is equal to I.temN~O, where #e is the average value of A/Z.  
Therefore, the equilibrium condition is 

~:F(r) +/.t,mN(p(r) -- # = const, (14) 
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where/z is the chemical potential. 
of the electrons we have 

~F(r) = m o c ~ V l  + z~, z :=  p~  , (15)  
m e c  

p : Bx a, B - 87cmacamN 
3h a ~ = 0.97 x 10s#~(g/cmS). (16) 

If we solve (14) for ~0 and insert the result into the Poisson equation (13), we 

obtain with (15) and (16) for the quantity z(r) := ¢1 + x(r) 2 = eF(r)/m~c 2 the 
following relativistic Thomas-Fermi equation for a sperically symmetric star: 

1 d ,  2dz, . G B m N ,  2 
- ~ - x - - - t *  - 1) ~/2. (1~) 5 &  tr & ) =  c m ,  

This is identical to the well-known Chandrasekhar equation for WD's. 
The Chandrasekhax theory can be derived as a limit of a more fundamental 

theory. Our qualitative discussion makes it plausible that  we can chose as starting 
point the following semirelativistic Hamiltonian (for simplicity we consider N 
electrons and the same number of protons): 

HN = ~ [ ¢ p ~  + m 2 -  m ] -  ~ ]xT" ----xj[' 
i = 1  i<./  

where xi and p~ are canonically conjugate variables (h = c = 1). It is now 
natural to compare the quantum energy 

E % N )  := inf specHN (19) 

with the semiclassical energy of the Thomas-Fermi theory: 

ETF(N) = inf{ETf(n) : n k O, f ndax = N, n 6 L4/a(R)}, (20) 

where 

1 ,~,(-) . o.~N~= 1 ~ ( X ' ) d ~  d~ ,  ' (21) Xq 

with 
p~(~) = (a~2~) ~I'. (22) 

One of the main results of Lieb and Yau [3] is the following 
Theorem(fermions): Fix the quantity r = Gm~N 2/a at some value below 

the critical value r~ of the Chandrasekhar theory (r ~ 3.1). Then 

lim EQ(N) /ETF(N)= 1. (23) 
N---*oo 

If r > %, then 
lim EQ(N)=--cca. (24) 

N-...+ oo 

If pv(r) denotes the local Fermi momentum 
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As a corallary one can show that  for the critical numbers N~ and N f  F for 
stability we have 

lira N ? / N T  ~ = 1. (25) 
G-- ,O  J J 

This demonstrates that we can study HN by means of its semiclassical ap- 
proximation. This is, of course, not really surprising. Indeed, corrections to the 
Thomas-Fermi approximation are of the order N -l/s, i.e., of the order 10 -19 for 
N ~ l0 sT. (In contrast to this tiny number for WD's, corrections of the order 
Z -1Is for atoms are not negligible.) 

We now turn to boson stars and begin again with a simple qualitative con: 
sideration. Using the uncertainty relation we obtain instead of (8) the following 
rough estimate of the ground state energy for free bosons (mz --* m) 

1 2 2 - Eo(N) ~ r~pn{N~/p 2 + m 2 - -~Gm N p}. (26) 

Obviously, the curly bracket is not bounded below if 

g > Nb := 2(Gin2) -1. (27) 

In the opposite case N < Nb the minimum is attained for the average momentum 

Po ~ m [ ( ~ )  2 - 1] -1/2 (28) 

and the ground state energy becomes 

Eo( N) ~ Nm[1 - (~)211/2. (29) 

The critical mass for boson stars is thus 

M Cbo,o~,) ,, ~ 2 M~' . (30) 
m 

In comparison to fermion stars we loose a factor Mpz/rn. This may change 
drastically once we introduce interactions (see Sect. 4). 

How do we now arrive at a semiclassical treatment of boson stars? Well, we 
just have to follow the Hartree procedure known from atomic physics. For the 
ground state energy of Hlv for N bosons we use the variational principle with 
trial wave functions of the form 

N 

• = I I  (31) 
i = 1  

with a normalized real non-negative wave function ~0 E L2(lq2). We have (with 
:o2 = - A )  

(g2, HNg/) = N < ~[[~/p2 + m 2 _ m][~o > 

N(N - 1)Gin2 / ~o(x)2~o(x') 2 ~z ,z , 
- 2 
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Let us introduce the "number density" n(x) = N~(x) 2. Neglecting the difference 
between N and N -  1 we arrive at the following semiclassical (Haxtree) functional 

E H(~) =< ~'/~l[~/p 2 + m~ - .~11~,~ > _ } ~ 2  / ~(x)~(x')[~_=_~ a~=d~= ' (32) 

and this functional has to be minimized with the subsidary condition 

f n(x)d~z = g .  (33) 

The corresponding Euler-Lagrange equation is the following Hartree-like equa- 
tion for ¢(x) = n(x) 1/2 

h/p,. + " ~  - "~ - G.Ca(x)l¢(x) = -~¢(x), (34) 

where tt > 0 is the chemical potential (Lagrange multiplier) and 

V(x) = f ~(x') d ~  ' (35) 
I x -  x'l " 

The critical number N~ for collapse has to be computed numerically. As far 
as I know this has not been done. One can, however, show [3] that 

1 . 2 7 ( c m D - '  < N ~  < 2 . 7 ( C . ~ )  - ' .  (36) 

Lieb and Yau have also proven that the ground state energy EH(N) for the 
Hartree functional and the critical number N H agree asymptotically with the 
corresponding quantum values. More precisely, the following theorem holds: 

T h e o r e m  (bosons): Let 

= inf{$H(n):n >_ O, f ~ = N, Ipll/~n ~/2 e Lz(R)} (37) EH ( N) 

and fix w := Gm2N below the critical value w~ (1.27 < w~ < 2.7). Then 

lim EQ(N)/EH/N) = 1. (38) 
N--~oo 

If w > we then limN-,¢¢ EQ(N) = -oo.  Furthermore, 

N Q 
lira , ' b  = 1. (39) 
o~o N~ 

I conclude this section in deriving rather stringent upper and lower bounds 
for the critical mass of boson stars described by the semirelativistic Hamiltonian 
(we include now the rest mass) 

N Gm 9- (40) 
HN = ~ ep~ + m 2 -- ~ ix i _ xj[" 

i=1 i< j  
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In a first step we show that [4] 

MN : :  inf apecHN </V[, ~-~ ] + mEN-- , (41) 

where rh is any mass and EN uR = inf *pec H~ R for the no.relativistic Hamilto- 
nian 

N 2 H~R= ~_, P' ~ Gin2 (42) 
- i x , -  x~l" 

Now we have already used in the introduction the operator inequality 

HN < N[m2 + m- p~ ~ Gm 2 . 
2,~, ~] + ( E  - (43) 

, ~ . . l ~ - - x j l  )" 

Because of the different masses in (43) we need the ~-dependence of the ground 
state energy E~(~;) of the Hamiltonian 

1 2 1 (44) HN(r~) ----- E ~P'  - ~ E  I~, - x j l  
i < j  

' )~Xl ,  i 1 Applying the canonical transformation x i = Pi -- ~Pi we find the  scaling 
behavior 

H~(~) = ~ H ~ ( ~ )  (45) 
t 

and thus EoN(A~) = :~2EoN(~ ). Hence we can conclude from (43) that  the in- 
equality (41) holds. 

- N For large rh the right hand side of (41) is ~ m[T + E~R/m] and therefore 
MN becomes - o o  if 

Nm 
E~ ~ + ~ < o. (46) 

[ ~,JvR ± N,,, 0) find from (41) the useful upper bound In the opposite case ~,~v m --T- > we 

N R  

MN < Nm[1 + 2E~v~P/2 (47) 
Nm ' " 

This shows that we need now an upper bound for E~  R, which we derive with 
the help of the variational principle. As a trial wave function we take 

N 

• (~,,..., x~)  = norm. I I  ¢(~x,) ,  (48) 
i=1  

where ¢ is a normalized one-particle wave function. We have 

( , ,  H g )  
_ ~ Y ~  _ ~ ( N  - 1)Cm~Z, (49) (~, ~) 2,~ ,G  

with 
I¢(x)l' l¢(x')? d3= d 3 ,  (so) 
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Minimizing with respect to ~ gives 

(50  

With a wave function ¢ propotional to e -¢* one finds easily fl2/a = (5/8) 2 and 
thus 

E~¢ R < -0 .049N(N - 1)2G2m s. (52) 

One can improve this bound a bit by chosing a two-parameter wave function 

¢ ~ e-a'/ '~'+1,  (53) 

leading to [5] 
E ~  R < - 0 . 0 5 4 2 N ( g  - 1)2G~m s. 

The Hartree calculation gives [6] 

(54) 

E ~  R < -0 .05426N(N 1)2G2rn s. (55) 

Therefore, the criterion (46) shows that we have relativistic collapse when 

N-~1 > 3.04(M#) 2. (56) 
m 

Otherwise (47) leads to the upper bound 

MN < Nm[1 - 2 × 0.054(N - 1)2G2m4] ~/2. (57) 

Taking the maximum with respect to N gives the following upper bound for the 
critical mass 

2 
MbO~O~ M~t . 
~ . ~ i ~  < 1 .51 ( 5 8 )  

m 

Martin and collaborators have also derived a stringent lower bound for M~it 
[4, 5]: 

M~r t~:=" > 413x/3am] -1 = 0.77(am) -1. (59) Z** 

Here we establish a somewhat less restrictive bound. To this end we make use 
of the inequality [7] 

1 ~r Ipi - pJ l  
- -  < (60) 
[xl  - x j l  - 2 2 

(where the operators are considered as quadratic forms). Together with IPl - 
PJl < [Pil + IPJ[ we then obtain 

HN > ~"~[V/'-~i + m 2 - 4 G m 2 ( N -  1)[Pill. 
i 

(61) 

The square bracket on the right hand side is non-negative for 

N - i < 4(am~)-~,  (62) 
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and this guarantees relativistic stability. If this condition holds we can minimize 
the square bracket in (61) with respect to each IPd and obtain the inequality 

gjv ~ Nm[1 - ( 4 G m 2 ( N  - 1))2] 1/2 

> g ~ [ 1  - (4am2N)~] 1/~. (63) 

The last expression has a maximum for N = (Gm2)-12v~/Tr, which satisfies the 
bound (62). Therefore, we obtain the bound 

}(a.~)-'  = 0.64(cm) -1, (64) M~bO~o,,,) > 
sf; 

which is already very good. 
It turns out that the improved lower bound (59) is above the maximum mass 

of a general relativistic boson star (see Sect. 4). This should, however, not be 
too surprising, since the semirelativistic Hamiltonian neglects, for instance, the 
fact that  the kinetic energy of the bosons is also a source of gravitational fields. 

3 E q u a t i o n  o f  s t a t e  a b o v e  n u c l e a r  d e n s i t i e s  

For neutron stars the semirelativistic Hamiltonian (40) provides at best a rough 
model. First of all, the degree of compactness is so great that we have to use gen- 
eral relativity for a quantitative description. In addition, nuclear forces become 
important and do not lead only to small corrections as the Coulomb interactions 
for WD's. From what has been said earlier, it should, however, be clear that we 
can savely use a semiclassical approach in which we use Einstein's field equations 
together with an equation of state (EOS) for neutron star matter.  

Up to about nuclear densities the EOS is reasonably well known, but the 
central densities of neutron stars can be almost an order of magnitude higher. 
One is thus in a very difficult regime. (Below nuclear densities the nuclear gas is 
rather dilute and at much higher densities we would have asymptotic freedom of 
QCD. For neutron star matter we are just between these two limits where things 
become simple.) 

Among the many approaches for arriving at an equation of state I discuss 
here only the mean field theory of Walecka and coworkers [8]. 

The main features of this approach can already be seen in a simple model  
Assume that a neutral scalar meson field (¢) and a neutral vector field (V,) 
couple to the baryon current by interaction terms 

go~¢¢ and g~(~7"¢Y,,. (65) 
Thus the Lagrangian of this simple model is 

/ :  ---- ~ [7" ( ia~  -- g,,V~) - -  (M - g~¢)]~b ÷ 

} ( 0 ~ ¢ 0 ~ ¢  - .~ :¢2)  - } F . ~ F  "~ +}m:V.V~';  

F ~  = cg,,V,,-O~V~,. (66) 
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For very large densities one can replace the meson-field operators by their ex- 
pectation values (mean field approx.): 

< ¢ > -  ¢0, < y .  >_= 6.0v0. (67) 

We consider a static uniform system. Then the meson field equations give 

¢0 g" g" = ..-~ < ¢ ¢  > -  =-zP,, (68) 
a m s  

= g._2.. ~ g , ,  
Vo my < ~bt~l' >--  "~'~PB.m,, (69) 

In this mean field approximation the nucleon field operator satisfies a linear 
equation: 

[--i'Tt'C3~, -4- g,,7°Vo -4- M*]¢ = 0, M* = M - g,¢0 (effective mass), (70) 

and the Lagrangian density takes the form 

1 2 2  1 = 2  L . ~ r  = 5[i~ - g~7°v0 - M*]¢ - ~-~,¢0 + ~m.Y~. (71) 

The quantization is straightforward. We are mainly interested in the energy 
density 

= <  Too > (72) 

and the pressure 

Note also 

1 
p = ~ < T  i; > .  (73) 

PB= (2~r)3_~ d 3 k =  67r2 F (74) 

(7 = 4 for symmetric nucleon matter, 7 = 2 for neutron matter) .  The mean field 
¢o (or M*) is determined selfconsistently: 

9 .  ~ 7 ~ d~k 
M* = M - g,¢o = M - gm2-~'2p, = M - m~ (2~r) 3 I<kF k) '  (75) 

where E*(k) = "v/k = + M .2. This leads to a transcendental equation for a given 

kF(p.) .  
Once c(pB) is known, the pressure is determined also by 

, = p5 ap--~(E/p.). (76) 

It turns out that only the ratios g~/m 2, and g~/rn~ enter the equation of 
state. These parameters are fixed such that for nuclear matter  we get the correct 
binding energy and saturation density: 

( E - . B M ) o  = -15.75MeV, (77) 

k ° = 1.42f.~ -I ( 7 = 4 ) .  (78) 
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Fig. 1. Equation of state for neutron matter in the mean field theory with and without p 
mesons. The horizontal segment for QHD-I is the result of the Maxwell construction in the 
region of the phase transition. (Fro m Serot and Walecka [8].) 

This gives 

M 2 

C~ -- g ~ ( ' ~ 2 ) = 2 6 7 . 1 ,  

M 2 

(79) 

(80) 

With these values one can compute the equation of state for neutron mat ter .  
The result is shown in Fig.1. In this simple model there is a first order phase 
transition (similar to the liquid-gas transition in the van der Waals '  eq. of state).  
At very high densities the velocity of sound approaches the velocity of light, a 

One can make the model more realistic by including for instance also p- 
mesons (charged vector mesons). In one such model (QHD-II  of Serot and 
Walecka) the p meson stiffens the equation of state at relatively low density 
and causes the gas-liquid phase transition to disappear (see Fig.l) .  

The  neutron star  mass is, however, changed only slightly, as is shown in 
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Fig. 2. Neutron star mass as a function of the central density for the equations of state in 
Fig.1. (From Serot and Walecka [8].) 

Fig.2. In particular, the maximum mass changes only by about 1%: 

M,~= ~ 2.60M o (instead o f  2.57M~). (81) 

These results should at least give some impression of the true equation of 
state. This problem is obviously one of the most dit:[icult in physics, because 
we are not far from the QCD-phase transition and have thus a strongly coupled 
dense many hadron system, which we cannot treat  on the basis of QCD. Lattice 
calculations cannot be done for non-vanishing chemical potentials. Basically this 
comes from the following circumstance. For T = 0 and # ~ 0 the energy density 
e has the form 

¢ = c2# 4 + ct#2/a 2 + O(c 2) (a----lattice spacing). (82) 

The second t e rm (which can be anticipated on dimensional grounds), creates a 
problem in the limit of vanishing lattice constant. So far, no satisfactory way 
out has been found. 

The mean field approach can be criticized on several grounds. It gives too 
large incompressibilities for nuclear mat ter  and the effective mass is strongly 
density dependent and surprisingly low ( M * / M  ..~ 0.55) for symmetr ic  mat te r  
at saturation. Quantum fluctuation corrections turn out to be small at high 
densities. At nuclear densities they are, however, large. For instance, the effective 
mass is increased to M* ~ 0.85M. 
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4 Genera l  relativist ic  boson stars 

In recent years a large variety of boson star configurations and their stability 
have been analysed. It is not my intention to give here a comprehensive survey 
(various review articles are in preparation [9]). I shall discuss briefly three types 
of boson stars for the following matter models: (i) complex self-coupled scalar 
field ¢, (ii) non-linear sigma model, (iii) non-abelian gauge fields. 

We use again a semiclassical approach and look only for spherically symmet- 
ric configurations. Let me first give the basic formulae which are in common to 
all models. 

We can use Schwarzschild-like coordinates with the following form of the 
metric 

g = e2°dt 2 - [e2bdr ~ + 7`2(d~ ~ + sin2 dd~) ] ,  (83) 

where a and b are only functions of 7" for the equilibrium configurations. (For 
radial pulsations a and b depend only on r and t.) On symmetry grounds, the 
energy-momentum tensor T~ has the general form 

/' o 
(T~) = -PT (84) 

0 --P± 
--P_L 

As a consequence of the Bianchi identity and V • T = 0 only the t t  and 
the r r  components of the Einstein field equations are independent. These read 
explicitly 

1 e - 2 b ( !  _ 2b') = 8~cp,  (85) 
r 2  x 7. 2 7` 

1 e--2b( ! + "~') = -8~GpT~, (86) 
T 2 ~ r 2 r 

where a prime denotes the derivative with respect to r. We note also the r- 
component of V- T = 0: 

(p + p~)a' = -V: + 2(p± - w)/r .  (87) 

Instead of the metric variable b we use also the mass function re(r) defined by 

e-~b= i 2re(r) (88) 
r 

In terms of this the field equation (85) reads 

m' = 4~rGpT  ̀2. (89) 

The Schwarzschild mass is equal to m(oo). Instead of (85) and (86) we have the 
independent field eqations (89) and 

e-~% ' + b') = 4~C(p + W)- (90) 
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a) C o m p l e x  scalar  field 

The Lagrangian of the matter model is taken to be 

£ = V , ¢ ' V ' ¢ -  U(l¢[2), (91) 

with 

U(I¢l ~) = ":I¢? + f~lCl ~ +..., (92) 
whose energy-momentum tensor is 

T~.(¢) = V,¢*V~¢ + V~¢*V,¢ - g~£ (¢ ) .  (93) 

This model has also a conserved particle number current, corresponding to the 
global U(1) invariance: 

s .  = ~ ( ¢ * v . ¢  - v . ¢ * ¢ ) .  (94)  

Even for a static star we must allow for a periodic time dependence of ¢ 

¢(r, ~) = ~ a ( , ' ) :  '~'. (95) 

That such a time dependence is indeed necessary is discussed in Ref. [10]. (w 
plays the role of a Lagrange multiplier belonging to the conservation of the total 
particle number.) 

The components p, pr, px are easily found to be 

1 2 2 2= l_a,2e-2b+V(a),  (96) p = ~ w a e -  + 2  

p ,  = p - 2 U ( a ) ,  p .  = W - a ' ~ :  ~ .  (97) 

The Lagrangian of the a-field is 

1. 2a 2 2 
L = ~L~- ~ a - e - ~ :  - U ( a ) ] ,  (98)  

whose Euler-Lagrange equation reads (note that V ~  oc r2e~+b): 

2b OU w2 e2b-~a (99) : + ( a ' - e +  2-)~'= e r b-;~- 

Many authors have integrated the coupled field equations (85), (86) and (99), 
with the explicit expressions (96), (97) for p ,  pr and 

U(o-) = lm2a2 + 1 2 4 2 ~:  a + . . . .  (lOO) 

In Fig.3 we show the result for the flee case (U(a)  = 1_2_2, T,,~ v 1. The Schwarzschild 
mass M is plotted as a function of a(0). The particle number N belonging to 
the current J ' ,  i.e., 

N = w eb-%r24~-r2dr, (101) 
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Fig. 3. Boson star mass in units of M~,,/m (solid line) and particle number in units of M~t/rn 2 
(dashed line) as a function of the central density c,(0) in units of (4~rG) 1/2 for free bosons. 

is also shown. As remarked earlier, the maximum mass (M,~==) is below the lower 
bound (59) for a semirelativistic approach. 

For  non-vanishing selfcoupling ( f  ¢ 0) the critical mass for boson stars can 
be much larger. In [11] it is shown that for fMpt/m >> 1 one has the simple 
formula 

M~, (O.1GeV 2 
Mm= o.o6 - i - - - j - - )  Mo. (102) 

This shows that the maximum mass of a boson star is not very much smaller 
than the Chandrasekhar mass for a fern'don mass m / f  1/2. 

The interaction introduces (for fMv~/m >> 1) a new scale into the structure 
of the boson star, given by R ,-~ fM__~! Correspondingly, the typical magnitude 
of the bose field is drastically reduced and becomes ~ m / f  1/2. 

One can demonstrate [12] that the critical points for M and N occur at the 
same values of a(0). This allows one to conclude that the rising branch, starting 
with small values of a(O), is stable. I do not go into the details of the stability 
analysis of this type of stars since that  has been done in the contribution of 
Schunck [13]. (For a review, see also Ref [9].) I will, however, say something 
about the more difficult stability analysis of the next two types of boson stars. 

b) S e l f - g r a v i t a t i ng  S k y r m i o n s  

In an at tempt  to find stable black holes with hair we have recently con- 
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structed self-gravitating sigma-model stars, which are examples of topological 
boson stars [14]. 

The basic field variable of the non-linear sigma model of Skyrme is an SU(2) 
valued function U(m) on the space-time manifold (with metric g and covariant 
derivative V s ). In terms of the quantities 

As = V t V s V ,  F,v = [A,, A~] (103) 

the SU(2) × SU(2) invariant Lagrangian density is given by [15] 

£ = - T T r ( A s  A s) + Tr(F,v F '~) ,  (104) 

where f and g are  two coupling constants. Note that the Lie algebra valued 
1-form A = Asdz  s is just the pull-back of the Maurer-Cartan form @ on SU(2) 
by the map U : A = U* (O). Therefore, the Maurer-Cartan equation implies 

dA + A A A = 0 (105) 

and the 2-form F corresponding to Fv~ is also equal to - d A .  It is then also 
obvious that 

1 
w = 2--~2 Tr(A h A A A) (106) 

is a dosed 3-form, whose Hodge dual is the well-known topological current of the  
Skyrme model. The normalization in (106) is chosen such that w is - up to a sign 
- equal to the pull-back of the normalized invariant volume form on SU(2). If the 
asymptotics is such that we can consider U as map from the compactified three- 
dimensional space (for fixed time) into SU(2), then the integral of w gives the 
degree (winding number) of this map and is thus an integer, which is a homotopy 
invariant. (In particle physics applications this topological integer is interpreted 
as the baryon number [15].) 

Variation of the metric in the matter  action leads to the following expression 
for the energy-momentum tensor of the Skyrme model 

f2 1 A s A  s] + 1 _ 1 F T~# = - y T r [ A ~ A #  - -~g,~# ~ f  Tr[F~sF#vg ~ ~g~# Su FS~]. O07) 

We look now for static spherical symmetric solitons. For U(x) we make the 
familiar hedgehog ansatz 

U(x) = cos x(r )  + i sin x(r)  r .:k, (108) 

Where "rl denote the Pauli matrices. The corresponding Lie algebra valued 1-form 
A is then given by 

- iA = 7¥X'dr-F [sin X cos X ~',~ + sin2 X T~] d'~ + [ -  sin 2 X T,~ -t- sin X cos X %,] sin ~dy~, 
(109) 
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where "rr, "r,~, %, are the spherical projections of the Pauli matrices and a prime de- 
notes the derivative with respect to r. This is of the general form of a spherically 
symmetric SU(2) connection. 

For the relevant component of the energy-momentum tensor we find, after 
some calculations, 

r~ sin2 X- Lsin~X[2e-~b(X')2 + ~ ] ,  (110) p = f2[e-2b(X')2 + sin2x] -{- .o2 r 2 

P,- 1 sinr~Z[2e_2b(X,) 2 sin~ X] (111) = l f z [ e - 2 ' ( X ' ) 9 - 3 s i n 2 x ] + ~  r2 • 

The non-linear matter  equation follows from the matter action which is 

(112) 

with 

1 1 1 - 2 - ,2  =-b sin2x =+b 
= + 2 s i :  x : + ' l  + + ]. 

(113) 
The corresponding Euler-Lagrange equation is 

f2[(e°-~2X')' - e °+b sin ~.x] = 
a+b s i n  2 Y ~ [ - 2 ( : - b x  ' sin s x)'  + (X')2e °-b sin 2X + e ~ sin 2X]. (114) 

We introduce the dimensionless radial variable 

m = g f r  (115) 

and the dimensionless coupling constant 

n = 4x(Mff--~l)2. (116) 

(The coupling constant g is dimensionless.) 
For the numerical integration we need the behavior of the functions a, b 

and X near the origin. We first note that a(0) will be adjusted such that a(r) 
vanishes asymptotically. (This fixes the time coordinate t.) Furthermore, we 
must require that  X(0) = 7r, in order that U(z)  in (108) is well-defined at r = 0. 
The expansion of the various quantities around the origin is then determined by 
"7 := X'(0). With the help of the field equations one finds : 

z 

b = 

X ---- 

2 7 

~'T2(1 + 72)x 2 + O(m4), (117) 

~3 ( 1  672 1 2 )  
+ 7~ + i + 2 . y ~  i-6 '<3 + + 2-:)  - ~ (  + 7 2) ~3 + 0(~') .  
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Fig. 4. Radial dependence of the matter field X (left scale) and the metric function m (right 
scale) of self-gravitating Skyrmions for the following values of the coupling constant: g = 0, 
0.01, 0.02, 0.03, 0.04. X and the asymptotic values of m decrease both monotonically with 
increasing t~. For values ~ > ~ > 0.0404 there exist no particle-like solutions with winding 
number one. 

The  "shooting parameter" 3' is chosen such that X(oo) = 0. Since the topo- 
logical 3-form (106) becomes 

1 I 2 " 

to = --2~r2 X sin x dv A d'~ A dT, (118) 

the winding number is then equal to one. 
In Fig. 4 we show the results of the numerical integration for the radial 

dependence of the matter variable X and of the mass fraction m for various 
coupling constants ~ (The other coupling constant g is completely absorbed in 
the dimensionless radial coordinate z . )  Qualitatively the behavior of X is like for 
the well-known Skyrmion (corresponding to ~ = 0). The increasing gravitational 
binding energy of our topological boson stars as a function of i¢ can be read of 
from the asymptotic behavior of rn(r). For reasons of available space we do not 
show the metric variable a(r); its qualitative behavior is as expected.  

The  curves shown in Fig. 4 cover almost the complete interval [0, ~ ]  of  the  
coupling constant ~ for which particle-like solutions with winding number one 
exist. Numerically we found ~ = 0.0404. 

We have recently carried out a stability analysis of the self-gravitating Skyr- 
mions [16]. At first sight one may think that this is superfluous, because these 
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Fig. 5. The potential V as a function of the radial coordinate p. The dashed line shows the 
fiat case, where V is nowhere positive. The fully drawn curves correspond to the potentials for 
self-gravitating solutions with ~ = 0.02, 0.03, 0.035 and 0.04. 

objects have an integer winding number. This implies a kind of global stability, 
which is, however, quite different from the more important notion of (local) 
Liapunov stability. Indeed, it has turned out that Liapunov stability is lost, 
once the coupling constant ~ becomes larger than a critical value ~,. On the 
other hand, the frequency spectrum of radial pulsations is real for ~ < t~= and 
thus all radial modes are oscillatory. 

The stability analysis is greatly simplified by the fact that  the metric per- 
turbat ion can be eliminated with the help of the gravitational field equations 
and tha t  the determination of the frequence spectrum can thus be reduced to 
the solution of a one-dimensional eigenvalue problem. (I shall illustrate this 
technique in my second contribution to this meeting.) More precisely, we can 
reduce the determination of the frequency spectrum for radial perturbations of 
the Einstein-Skyrme equations to the problem of finding the energy spectrum of 
a p-wave Schr&dinger equation with a bounded effective potential, which is deter- 
mined by the equilibrium solution. Bound states of this Schhrfdinger equation 
correspond to exponentially growing modes. 

In Fig. 5 I show this effective potential as a function of a rescaled radial 
variable p, defined by 

dp = e(h_=o)(=)_(h_ao)(o) p(O) = O, (119) 
dm 
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Fig. 6. The phase shift 6i as a function of the energy k for different coupling constants. 6x 
is evaluated at the zero of the potential V(p), i.e. 6i is the asymptotic value of the phase 
function corresponding to the nowhere repulsive potential VS(-V). The curves demonstrate 
that V(> VO(-V)) has no bound state for ~c < ~ ~ 0.038. 

for various values of the  coupling constant  g. We have de t e rmined  the possible  

bound  states  with the help  the well-known Levinson theorem which s ta tes  t ha t  

the  zero-energy value of t he  phase shift 6t is 7r t imes the  n u m b e r  of bound  s ta tes  

wi th  angular  momen tum I. As is obvious f rom Fig.  6, the  n u m b e r  of bound  s ta tes  

for our problem is zero for ~ < t~¢ ~. 0.38 and  becomes to one for ~ > i%. (We 

have shown tha t  this is so in the  whole in terva l  [~=, ~0]-) For  the  detai ls  of the  

s tab i l i ty  analysis I refer to  our paper  [16]. (See also Ref. [30] where  t he  nonl inear  

behavios is s tudied.)  

c) G a u g e  b o s o n  s t a r s  

I t  came as a big surpr ise  when Bar tn ik  and McKinnon  (BK)  discovered a 
few years  ago tha t  the  Einstein-Yang-Mil ls  (EYM)  sys tem has par t ic le- l ike  so- 
lut ions  [17]. This was unexpec ted  because t he re  are a number  of non-exis tence  
theorems 1 for re la ted sys tems,  for ins tance  for the  EYM equa t ions  in 2+1 di- 
mensions  [18]. The  BK solutions are necessar i ly  of a special  type ,  because  one 
can show tha t  the EYM sys tem does not  a d m i t  spherical ly s y m m e t r i c  soli ton so- 

1We give some details on that in the Appendix, where static EYM fields are discussed in 
general. 
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lutions with nonvanishing YM charges [19]. In particular, there exist no regular 
monopoles and dyons. 

I describe now some details of the BK solutions of the SU(2) EYM system. 
(Generalizations to other Lie groups have just been started [20].) 

First, one has to parametrize spherically symmetric gauge fields. In geomet- 
ric terms, one must describe SO(3) invariant connections on principle bundles 
(over spacetime with the gauge group as the structure grgup) which admit an 
SO(3) action by bundle automophisms, such that  the induced action on the base 
manifold are the SO(3) isometries of spacetime 2. Without any loss of generality, 
the gauge potential can be represented in the following form [22]: 

( 

A = ur3dt + vr3dr + (wrl + @r2)d~9 + (cot ~r3 + wr2 - @rl)sinzg d¢, (120) 

where Tj(j = 1, 2, 3) are the Pauli matrices and u, v, w and @ depend only on r 
(and t for radial pulsations). The form (120) remains invariant under a residual 
U(1) gauge symmetry which can be used to set v = 0. One can also show [19, 24] 
that the electric part with amphtude u must vanish for a regular solution (see also 
the Appendix). Because the variables w and @ appear completely symmetrically 
in the EYM system the two amplitudes must be proportional for a particle-like 
solution and we can always set ~ = 0 (after a constant gauge transformation). 
In this way we arrive at the BK-ansatz: 

A = ~0ndZ + (cot ~ 3  + w~) s in ~d ¢ .  (121) 

The angular momentum part of the YM field strength F = dA + A A A is equal to 
(w 2 - 1)T3d~9 A sindd¢ and describes a monopole with charge distribution w 2 - 1. 
Working out the energy-momentum tensor gives 

where 

hi, (122) 

p,  - LJ, (123 )  

e - 2 b  

B~,--- r 2 "tO , = 
(1 - ~ 2 ) 2  

T4 
(124) 

The longitudiual magnetic part (BL) acts as a repulsion. 
The Schwarzschild solution is obtained for w -- +1 and the Reissner-NordstrCm 

solution corresponds to w - 0. 
Originally BK found their solution only numerically. In the meantime a 

mathematical existence proof has also been given [25]. In Fig. 7 we show the 
amplitude w for the node numbers n = 1, 2,3. One can give a priori argu- 
ments that  ]w] < 1. The energy density is concentrated in a central region 
and decays rapidly. In an intermediate region, the YM fields are approximately 

ZThe theory of these invariant connections has been described systematically by Wang; see, 
e.g., Ref. [21]. We have generalized the representation (121) to any compact semi-simple gauge 
group [23]. 
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Fig. 7. Radial dependence of the matter field w (see eq. (121)) of the Bartnik and McKinnon 
solutions for the node number n = 1, 2, 3. 

those of a unit charge Dirac monople and the gravitational field is close to the 
Reissner-NordstrOm metric. In the far field region the solution approaches the 
Schwarzschild solution with discrete values of the ADM mass. Therefore, the 
total magnetic and electric charges vanish. 

Zhi-hong Zhou and I have shown that the BK solutions are, unfortunately, 
unstable [26, 27, 28]. I do not go into the details of our work, since I will show in 
my second contribution how a similar analysis is done for the non-abelian black 
holes. It should, however, be mentioned that  we have not only demonstrated 
the instability, but we have also followed numerically the non-linear evolution of 
small initial perturbations [27, 28]. (For another approach see Ref. [29].) 

In this talk I have not discussed how boson stars might have been formed in 
the early universe. It is not totally inconceivable that a significant component 
of non-baryonic dark matter  consists of boson stars. 

A p p e n d i x  

In this Appendix we discuss first in general terms static solutions of the EYM 
system and present the proofs of some non-existence theorems for particle-like 
solutions. 

A static space-time (M,g) is of the form M = R x N, 

g = - a 2 d t  2 + h (125) 
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where a is a non-negative function on N and (N, h) is a d-dimensional Pdeman- 
nian space with (time-independent) metric h; t is the natural coordinate of R 
and 0t is a timelike Killing field. Here, we are not interested in black holes, and 
therefore assume that  N is topologically an R s. 

First, we split the source-free YM equations into space and t ime ( d + l  split- 
ting). (This can easily be generalized to stationary situations following the pro- 
cedure in Ref.[31].) Let 

A = Aidx i + Aod~ 

- n + ed , (126) 

be the decomposition of the Y M  gauge potential. Spatial objects are always 
denoted by boldface letters. For the YM field strength we have then the decom- 
posion 

where 

F = d A + A A A  

= dA + A A A + de  A d / +  [A,¢] A dt 

= F + D e A  d~ 

= B + aE  A d/, (127) 

B = F = d A + A A A ,  (128) 

aE  = De. (129) 

The homogeneous YM equation D F  = 0 gives immediately 

DB = 0, 

D(aE)  + [¢,B] = 0. (130) 

For the Hodge-dual *F we find the d + t splitting 

* F = * E  - a ( * B )  A dr. (131) 

where * denotes the spatial Hodge-dual. Therefore, the YM equation D * F = 0 
leads to the spatial equations 

D . E = O ,  

D ( a , B )  - [ ¢ , , E ]  = 0. (132) 

Note that  in the non-abelian case the static field equations for E and B do not 

decouple. 

Consider now a particlelike solution. We show first that the field E has to 
be vanish under mild fall off assumptions at infinity. Using the identity 

T r ( ¢ D ,  E) = dTr(C*E) - Tr (D¢ A *E) (133) 
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and (129) in the following consequence of (132) 

/N T r ( ¢ D  * E)  = 0, 

we obtain with Stokes theorem 

/ N a T r ( E  *E) 0, A 

and hence E = 0. The field equations (130) and 
'magnetostatic equations': 

(134) 

(135) 

(132) then reduce to the 

D B  = 0, 

D ( a * B )  = 0. (13e) 

A Einstein-Maxwell  system 

Let us first consider the abelian case. From d (a* B)  = 0 we have globally a*B = 
d~b. Hence, if we replace in the argument above E by *B, we find also B = 0. 
It is important to note that this reasoning can obviously not be generalized to 
the non-abelian theory. Therefore, the Einstein-Maxwell equations reduce to 
Einstein's vacuum equations, which split as follows: 

Ao~ ~ 0, 

= (137) 

Using the maximum principle for harmonic functions and the asymptotic flatness 
condition 

--~ 1 (138) 

at spatial infinity, we obtain a - 1. Hence, Ric(h) = O. In three dimensions 
this implies that  the Pdemann tensor vanishes and there remains only the trivial 
solution (Lichnerowicz [32]). 

B EYM system in 2W1 dimensions 

The argument in A cannot be generalized to the non-abelian case. As first 
remarked by Deser [18], we can, however, exclude easily non-trivial solutions in 
2+1 dimensions. The crucial point is that w := a*B is a space-time scalar for 
d -- 2. From Dw -- 0, we obtain for the norm Iwl of w (in group space) the 
condition 

dlw [ = 0, (139) 

which implies for d = 2 that [wl = const. This constant must vanish, otherwise 
there would be a B field which does not vanish asymptotically. The rest of the 
argument in A can be repeated. 
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C Non-existence of  static Y M  solitons 

We recall at this point the nice argument of Coleman [33] that there exist no 
particlelike solutions of the YM system in d + 1 dimensions if d # 4. 

From (127) we find 

(F, F)  = (F, F) - (De, De). (140) 

The right hand side of this equation is proportional to the Yang-Mills-Higgs 
Lagrangian without self-couplings in d dimensions. Thus, we have 

- l  / ddx(F,f) = SYMH(A,¢) 
4 

= $1 + $2, (141) 

with 

1 f(F, F)dax, 
$1 4 1/ 
s2 = ~ (D¢,D¢)dd=. (t42) 

Since the energy of the soliton should be finite, both terms $1 and $2 have to be 
finite. 

Suppose now that (A(x), ¢(x)) is a critical point of the action SgM~. Let 
us embed this field configuration into the two-parameter family of variations 

¢(x;a,A) = a),¢(Ax), (143) 

h ( x ; a , ~ )  = AA(~x). (144) 

The action has the following scaling behavior 

SyMtI(O" , )t) : O'2)t4-ds 1 JI- ~4 -ds2 .  (145) 

Since this function must be stationary for a = A = 1 we find for d ~ 4 that 
$1 = $2 = 0. Therefore, F = D¢  --- 0, which implies F = 0 (for d ~ 4). 
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Black Holes with Hair 

N o r b e r t  S t r a u m a n n  

I n s t i t u t e  for T h e o r e t i c a l  Phys i c s ,  U n i v e r s i t y  o f  Zur i ch  

1 I n t r o d u c t i o n  

Until recently it was generally believed that the well-known uniqueness theo- 
rems for stationary black holes, established rigorously for the Einstein-Maxwell 
(EM) system[i], should have natural generalizations to other matter models, 
like Yang-Mills (YM) theories. It came, therefore, as a big surprise when the 
"colored" black hole solutions for the Einstein-Yang-Mills (EYM) system were 
discovered [2, 3, 4], because these non-abelian black holes represent counter ex- 
amples to the "no hair conjecture", which states for this case that the structure 
of such black holes should be determined uniquely by the hole's mass, intrinsic 
angular momentum and the global YM charges defined at spatial infinity. 

The colored black hole solutions are static, spherically symmetric and have 
vanishing ¥M charges. Asymptotically they approach the Schwarzschild solu- 
tion, but they have "Yang-Mills hair". Near the horizon they are close to the 
P~eissner-NordstrCm solution with an effective charge that slowly decays in a 
transition zone. So far, their existence has only been established numerically. 
It should, however, be possible to extend the rigorous existence proof of the 
Bartnik-McKinnon ground state solution of the EYM equation [5] to the black 
hole case. 

Zhi-hong Zhou and I have shown that the colored black holes are unstable [6, 
7, 8]. Since there has been some controversy on this during the last year [9, 10, 
11, 12] which is now settled, I shall discuss this point in some detail 

Because of their instability the colored black holes are not so interesting 
physically. This is the main reason why we have searched for black holes of 
other non-linear matter models which would provide counter example to the no 
hair conjecture and which might in addition be stable. In view of the structural 
similarities of the nonlinear sigma models and Yang-Mills theories, we looked for 
black hole solutions of the coupled Einstein-Skyrme (ES) system. 

Recently we discovered numerically that the ES system has - for a certain 
range of coupling constants - indeed static black hole solutions with a regular 
event horizon and which approach asymptotically the Schwarzschild solution [13]. 
Outside the horizon the new solutions behave like self-gravitating Skyrmions, 
which we have also constructed numerically [13] (see also my first contribution to 
this meeting). A distant observer can, however, not distinguish these solutions 
with "Skyrme hair" from the Schwarzschild black hole. (The energy density 
of the matter fields decays rapidly.) Therefore, the new "Skyrme black holes" 
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provide counter examples to the no hair conjecture. Not everything which can 
be radiated away in the formation of a black hole will always be radiated away. 

The question of (linear) stability has also been investigated by extending our 
stability analysis of the Skyrmions [14]. We found that there are only osciUatory 
radial modes, satisfying the necessary boundary conditions at the horizon and 
at infinity [15]. Therefore, the ES black holes are linearly stable. The nonlinear 
stability can, in practice, only be decided by detailed numerical studies. To our 
knowledge, this has not even been done for the Schwarzschild black hole. 

2 C o l o r e d  b l a c k  h o l e s  

The basic formulae have already been discussed in my first lecture [16]. We 
chose the gauge potential again in the special form with only one independent 
amplitude 

A = w(r )r ldv  ~ + (co~r3 + w(r)r~)sin4d~o, (1) 

because one can prove that there exist only (embedded) abelian solutions of the 
Reissner-NordstrCm type if there is also an electric component [11, 18]. The 
matter  variable w(r)  and the metric variables a(r),  b(r) in 

g = e~=dt ~ - [e~% ~ +,~(dO ~ + sin ~ ~ d ~ ) ]  (2) 

must satisfy the following differential equations 

( 1  - "w2) 2 
m' ---- e-2bw '2 + 2r 2 , (3) 

e 2b 

a' - T (e_~%,~ (1 -2T2 ~2)~ + ~),~ (4) 

e 2b _ 2/.12) 2 e 2b 

w" -- .~_((1 r 2m)w'---~ "(1-w2)w' (5) 

where we have also introduced the usual mass fraction variable m(r): 

e - ~ ' )  = 1 - 2 ~ ( , , ) / ~ .  ( 6 )  

For black hole solutions the existence of a regular event horizon at r = rz¢ requires 
that 

2m(rH) : rH and a(rH) + b(rH) < co. (7) 

(Note that  the determinant of the metric is proportional to ea+b.) Outside the 
horizon the condition r > 2m(r) must, of course, be fulfilled and in addition we 
have to impose the asymptotic flatness condition a(r), b(r) --~ O, re(r) --* M < oo 
as r --* co. (Actually we have to require for a(r) only that it converges to a finite 
constant which we can choose to vanish by an appropriate choice of the time 
coordinate.) 

Fig.1 shows the radial dependence for several quantities of the ground state 
solution (n : 1). The horizon is taken at r H : 1. (There are black hole solutions 
for any value of r H .  This reflects a scaling property of the EYM system, as is 
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Fig. 1. Yang-MiUs amplitude w, mass function and 6 = -(a  + b) for the lowest colored black 
hole solution with event horizon rH = 1. (From [3].) 

shown in Ref. [8].) The effective Reissner-Nordstrem charge g(r) is defined in 
the obvious way 

g2(r) := 2KM - re(r)). (8) 

One sees that  this effective magnetic charge slowly decays in a transition zone 
outside the horizon. It has to be emphasized that all YM charges vanish and 
that  the solutions behave asymptotically like the Schwarzschild black hole. For 
a given r g  the gravitational mass M has a fixed value for each node number 
n. This family of non-abelian black hole solutions provides obviously counter 
examples to the originally expected uniqueness theorem for the EYM system. 
Many people had guessed that a generalized Isreal theorem should hold, namely 
that a static black hole solution with vanishing YM charges would have to be the 
Schwarzschild solution. More generally, it was expected that the only station- 
ary black hole solutions would be essentially abelian (embedded Kerr-Newman 
family) [19]. 

3 Ins tab i l i ty  o f  colored black holes 

It suffices to consider spherically symmetric perturbations, because we shall find 
an instability in this restricted class. Furthermore, we keep A in the form (1), 
but with an amplitude w(r, t) which depends also on t. The same is, of course, 
true for the metric variables a and b in (2). 
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"t/) 0 

Decomposing a, b and w in the vicinity of the black hole solution a0, b0 and 

4 r ,  t) = a0Cr) + a,(~, 0,  

~ ( r ,  ~) = ~0 (~ )  + ~ , ( ~ ,  ~), (9 )  

and treating the perturbation as small quantities in the time-dependent field 
equations gives coupled linear equations for the deviations al,  b, and Wl (for 
details see [6, 7, 8, 21]). I summarize now the main points of our analysis of 
these equations. 

The it-component of Einsteins field equations leads to (G = c = 1) 

bi = 2w0@l (10) 
T 

(with - _= c3t, ' =_ 0~). Considering also the tt-component leads to the conclusion, 
that  bl must be the following special solution of (9) 

bl = 2w~wl. (ii) 
T 

Beside bi we shall need also the combination (ai - bi)', which is already 
obtained from the sum of the linearized ~- and rr-equations, and (11): 

4 2so - 
' ' - w ~ ) w ~ .  b~ - ~ = 2(b0 - ~0 - )~1 ~ e  ~ o ( 1  - (12)  

In the derivation of (12) one must also repeatedly use the equilibrium equations 
(3)-(5). 

Next, we linearize the YM equation D * F  = 0 and find 

l ie2S°Wo(1- W2o)b~ - l e 2 s ° ( 1 -  3W2o)Wl = O. (13) 

It is a very remarkable fact that the only combinations of the metric perturbations 
appearing in (13), i.e. b~ - a~ and bl are already determined by the gravitational 
equations, without any further integration. This simplifies the analysis very 
much. Substituting (11) and (12) into (13), we obtain for the amplitude ( in 

w i ( r ,  I )  = ~(r )e ~t  (14) 

the following eigenvalue equation 

_ ~ , , +  i , ,  ~a ~ + U~ = a2e:~. (15) 

Here, we have introduced the abbreviation a = 2(bo -- ao) and the effective 
potential 

4[w,~2.a' _ 1 ) _  8 2bo ," 
U = rt o,  (y r ~-Ee Wowo(l - w~) - le2b(l -- 3Wo~). (16) 

r 2 
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For further investigations it is useful to bring (15) into the form of a one- 
dimensional SchrSdinger equation. We introduce the new radial coordinate p 
by 

dp 
T~ = ~ /~ '  P(~") = - o o  (17) 

and find 

with 

d ~ 
(--~-~ + uoss)~ = o ~ ,  ap- 

(18) 

u~ss = e-~U- (19) 

One can show that U~ff --~ 0 for p --+ 4-oo. It is clear that bound states of (18) 
are potentially unstable modes. Because of the presence of a horizon, we have to 
make sure that the corresponding perturbations of various quantities are all well 
behaved at the horizon. In order to do this, we introduce Kruskal-like coordinates 
u, v by 

= e "  cosh(,~), v = e~' sinh(,t). (20) 

Here, 7/has to be chosen such that f2 in the transformed metric, 

g = f2(dv~ - du ~) - r2(u,  v)d~l 2, (21) 

does not vanish at the horizon. This leads to 

1 d -~'2 

1 [1 (1 w2% ~2 
- - - ~ " "  ]e°~' .~÷~( ~"~. (22 )  

2rg  r g 

In arriving at the last expression we have used the equilibrium equations. For 
the ground state colored black hole solution one finds 

=0.184 ( n = l ,  r H = l ) .  (23) 

The potential U (as a function of the original variable r) is shown in Fig.2. For 
this potential we found exactly one bound state with 

cr -- -0.0269. (24) 

The corresponding amplitude ~ is shown in Fig. 3. 
The question now arises, whether this unstable mode is physically acceptable. 

If we transform to Kruskal coordinates it is obvious that the gauge potential 
(eq.(1) with the time dependent w(r ,  t)) is well-behaved at the horizon. The same 
can be shown for the perturbation of the metric (see [8]). H we look, however, at 
the field strength F its behavior seems, at first sight, to be untolerable [9]. We 
find easily 

F = (vdt A ~ + w ' d r  A f/ - -  (1 - -  w2)T3d'0 A sinddcp, (25) 
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where 
fl = n d ~  + +r2 sin~d~. (26) 

Inserting (14) gives for the perturbation of F at t = 0 

&Fit=0 = ia~dt h • + ~'dr A a + wo{rad~ ^ sinOd~o. (27) 

Here the first two terms are dangerous because of the differentials d~ and dr, 
which are related to du and dv for t = 0 by 

= = = 0 ) ,  ( 2 8 )  

which shows that 

gFIt=o = -e-"  (w{dv ^ f~ + du A f~) + wo~r3dO A sin zgd~o. (29) 
71 

Since ~ behaves near the horizon as e ~p, w 2 = - a  2, we have in (29) a competition 
of two exponentials. From (23) and (24) (i.e. w = 0.164) we see that 6F[t=o 
grows exponentially as we approach the horizon. Therefore, one might think 
that our exponentially growing mode should be excluded and that  the colored 
black holes would be linearly stable [9]: This is, however, not correct, because 
one can choose a superposition of our unstable mode with stable modes in such 
a way, that the initial perturbation of F is regular. In the long run, the unstable 
mode wins, of course, and the colored black hole is unstable, as we have always 
claimed [10, 7, 12]. 

4 B l a c k  h o l e s  w i t h  S k y r m e  h a i r  

I discuss now new black hole solutions with hair which we have recently found 
numerically for the non-linear sigma-model of Skyrme coupled to gravity [13]. 
These are also static and approach asymptotically the Schwarzschild solution. 

First, I recall the Lagrangian of the Skyrme-model. This is an algebraic 
expression in the quantity 

A,  = UtV,U, (30) 

where the basic field variable U(z) is an SU(2)-valued function on space-time. 
The Lagrangian has two independent coupling constants f ,  9: 

f--s = f---~ Tr( At, A t') + 1 
3-~gz Tr( F ~ f ~ ) .  (31) 

Here the 2-form F is just the commutator 

F ~  = [A,, A~]. (32) 

If we insert in (31) the hedgehog ansatz 

U(x) = cos x(r)  -{-i sin x ( r ) r  -x, (33) 
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F ig .  4. The maximal  range ol coupling constant ~5 and horizon =H for which black hole solutions 
exist lies below the curve of the figure. 

we find for the Skyrme action 

with 

(34) 

1 
Ls = ~f2[r2(X')2e~-b + 2sin2xe ~+b] 

1 t2~ ,,2ea-b + sin2 X ~+b- 
+ ~  sin ~ X[ ~X J - - ~ - e  l- (35) 

To this we must add the gravitational Lagrangian 

Lc = ~-~e [e - 2(1 + ra') + e-s0 + 2ra')]. (36) 

In [13] we have constructed black hole solutions for the coupled system described 
by (35) and (36). In doing this one has to derive first analytic expressions for 
the derivatives of the dynamical variables a, b, X at the horizon in terms of the 
shooting parameter  x(rz) ,  by making use of the field equations. This shooting 
parameter  is then chosen such that the boundary condition X(OO) = 0 is fulfilled. 

Our numerical studies of this non-hnear boundary value problem revealed 
that  for t; := 47r(f/Mpt) 2 in the interval [0, *;0], r~o = 0.0404, there exist always 
black hole solutions. For a given ~ the position of the horizon can be chosen in 
a ~-dependent interval which is shown in Fig.4. 

At t¢ = t;0 this interval shrinks to zero and beyond ~o ther are no black hole 
solutions. It is a very curious fact that  - within the numerical accuracy - the 
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Fig. 5. Radial profiles of the matter field X ( lef t  scale) and the m a s s  function r'n (right scale) for 
Skyrme black holes with a regular event horizon at xH = 0.2 for severat values of the coupling 
constant ~. (Note that the horizon in physical units increases with decreasing ,¢c~.) 

interval [0, ~0] is the same as for the particle-like solutions discussed in my first 
lecture. Is there a deeper reason for this coincidence? 

The  structure of these new black hole solutions is illustrated in Figs.5,6. In 
bo th  these figures we have chosen the position of the event horizon at rH = 

0.02/f.q and the radial profiles show the results for several values of the coupling 
constant  x. Outside the horizon the mat ter  field behaves like the self-gravitating 
Skyrmions. Since the matter  density falls off like r -4, the mass fraction r e ( r )  

rapidly approaches the total gravitational mass, which decreases with increasing 
6. In Fig.6 we show the radial dependence of the lapse function e 2a and com- 
pare  it with the Schwarzschild solution, for the same horizon. I t  is obvious tha t  
our  sigma-model black holes are clearly separated from the Schwarzschild solu- 
tions, especially for relatively large n. Asymptotically all our solutions approach, 
however, the Schwarzschitd metric. 

5 Linear  stabil i ty of the  Skyrme  black holes 

T h e  linear stability of the black hole solutions of the ES system proceeds along 
similar lines as for the colored black holes. The frequency spectrum for radial 
oscillations is again determined by a one-dimensional Schrbdinger equation on 
the  whole real line. The effective potential, which is determined by the black hole 
solutions, is everywhere bounded and vanishes asymptotically. Its complicated 
form does not allow us to make use of general theorems concerning the number 
of  bound states. We have, however, shown numerically [16] tha t  there are no 
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Fig. 6. Radial dependence of the lapse function e 2~ for the same solutions as in Fig.5. For 
comparison we show also the lapse function of the Schwarzsdaild metric with the same horizon 
in the variable =. 

bound states, i.e. unstable modes, for all pairs (~, ZH), except perhaps for the 
extreme cases with large ~ and almost vanishing =H. In this limiting region the 
effective potential varies rather strongly and numerical errors begin to develop. 
For details I refer to our recent paper [15]. 

The question of non-linear stability is outside of our abilities. In collaboration 
with Z.-H. Zhou we have, however, made some numerical investigations similar 
to the ones in Refs. [7, 8]. Strictly speaking, these apply so far only to the soliton 
solutions, for which we have solved numerically the full set of non-linear partial 
differential equations describing radial perturbations for a representative class of 
initial perturbations. For the time span which can be handled by our program 
no instabilities were found [8], in sharp contrast to our findings for the EYM 
system [7, 8]. Since some of the initial perturbations can also be considered as 
perturbations of the black hole solutions, we are quite confident that  not only 
the self-gravitating Skyrmions, but also the black holes with "Skyrme hair" are 
stable even on the nonlinear level. For this reason these represent much more 
interesting counter examples to the no hair conjecture than the colored black 
holes. 

For some further insight into the existence of such solutions, as well as for 
generalizations of no hair theorems to non-linear mat ter  models, I refer also 
to a recent paper with M. Heusler [21], in which we have generahzed scaling 
arguments to self-gravitating systems. 
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Abstract :  The gravitational fields of rotating bodies describe 'minimal' surfaces 
in a four-dimensional (Pseudo-)l~iemannian Potential Space with the line element 

e 4 U  

d S  2 = - 2 d c ~  d W  + 2 W  d U  2 - - ~  d A  2 - 2 a o W e 2 ° ' - 2 U p ( V )  d W  2 . 

This paper I is meant to prepare the numerical application of the minimal surface 
formalism to rapidly rotating neutron stars in a following paper H. 

1 I n t r o d u c t i o n  

In order to solve the problem of the rotating body in General Relativity 
more effort must be made to analyze the field equations for the interior of 
the body. Particularly, for numerical calculations of rotating star models a 
simplifying reformulation of the straightforwardly specialized field equations 
would be desirable. 

In the first part of the present bipartite contribution we undertake such 
an at tempt  for axisymmetric fluid bodies uniformly rotating around their 
axis of symmetry, which assumption implies a twofold space-time symme- 
try (axisyrmnetry and stationarity). We develop a rigorously geometrical 
approach considering the gravitational fields as 'minimal' surfaces in a 
(Pseudo-)Riemannian space (see (41)). In this language their regularity con- 
ditions on the axis of symmetry, the reflection symmetry with respect to the 
equatorial plane and the behavior of the gravitational field at infinity define 
the boundary of the wanted 'minimal' surface. The relationship to strings in 
(Pseudo-)Riemannian spaces is obvious. The roots of the procedure were the 
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stationary Einstein equations (Neugebauer and Kramer 1969) and a first 
goal was to extend the powerful generation techniques for vacuum fields as, 
e.g., B£cklund transformations (Maison 1978, Harrison 1978, Neugebauer 
1979, Hoenselaers et al. 1979) or the inverse (scattering) method (Belinski 
mad Zakharov 1978, Hanser and Ernst 1979) to the gravitational fields inside 
the body. Unfortunately, the search did not prove successful till now. That  
is due to the break of the exterior SU(1,1) symmetry by a matter  term in 
the metric of the Potential space (cf. 41). 

Nevertheless, the existence of a variational principle (Plateau problem) 
for both the exterior and interior region is a good base for numerical calcula- 
tions of the gravitational fields of relativistic star models. In this connection 
we focus our attention on rapidly rotating neutron stars. The activities in 
this field will be represented in a second contribution (cited as paper H). 

The present contribution (paper I)  is organized as follows: The funda- 
mental equations and symmetries are compiled in Section 2. A variational 
principle yielding the field equations and the relations among the exterior 
parameters (surface red shift, angular velocity) presented in Section 3 is 
reformulated in a minimal surface language in Section 4. In the following 
sections, parametrizations of the minimal surfaces and boundary conditions 
are discussed. 

2 F i e l d  E q u a t i o n s  a n d  S y m m e t r y  

In the subsequent section we turn to the mathematical description of ro- 
tating stars in General Relativity. We model t h e  star matter  by an one- 
component perfect fluid. The variables describing its state may be chosen 
to be the energy density ¢(z), the pressure p(x), the four-velocity ui(x), and 
the gravitational field gik(X) (i, k = 1, 2, 3, 4). These fields are solutions to 
the Einstein equations 

1R R i k  --  ~ gik = "- I£0 ((g -]- P)  UiUk "~ Pg ik )  (1) 

~0 being Einstein's gravitational constant. Here the four velocity ui has the 
norm - 1  (we take c = 1): 

uiu i = - 1  . (2) 

We may assume that the matter distribution and the gravitational field of 
rotating stars are stationary and axially symmetric, i.e. the metric admits 
a 2-dimensional Abelian group of motions G2, 

~i;k "~ ~k;i = 0 , ~i;k + Tlk;i ~-" 0 
i k i k 

- = 0 ,  0 ,  > 0 (3) 

with Killing vector fields ~i and ~i. (A comma denotes the partial derivative 
and a semicolon the covariant derivative.) 
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From these equations we conclude that  we can choose a coordinate sys- 
tem so that  the Killing vectors take the form ~i = 6~ and r/~ = 8~ and the 
metric tensor gik(x) is independent  of the timelike coordinate x 4 = t and 
the spacelike (azimuthal) coordinate x 3 = ~. 

The  space-like Killing vector 77 i generating axial symmetry  has closed 
(compact) trajectories and vanishes on the rotat ion axis. 

To describe a rotational motion,  the four velocity must  be a linear com- 
bination of the group generators ~i and r/i, 

u i = e - V ( ~  i + s2~ i ) ,  (4a) 

where, in general, the coefficients V and /2 depend on the coordinates. 
Obviously, 

e + aT/)  • (45) 

The conditions (3) and (4a) together with the field equations (1) imply 
(Kundt  and Triimper 1966) 

gik lm~l i~k~ l;m --~ 0 -~ g ik lm~i~kr / l ;m  , (5) 

i.e. the space-time of rotat ing fluid bodies admits  2-spaces orthogonal  to the 
2-dimensional group orbits formed by the Killing trajectories (eikzm is the 
Levi-Civita tensor). Then,  in the adapted coordinate system, the space-time 
line element can be writ ten in the form (Lewis 1932, Papape t rou  1966) 

ds ~ = gABdxAdx B + g ~ d x # d x  V , 

¢ : ¢ = (6) 

where the non-vanishing components  of the metric tensor gAB (A, B = 1, 2) 
and g#, (# ,y  = 3,4) depend only on the coordinates ( x l , x  2) which label 
the point s on the 2-spaces orthogonal to the Killing trajectories. 

Stationarity and Axisymmetry of the star mat te r  distr ibution means in- 
variance of the interior variables ¢(x), p ( x ) a n d  ui(x) under  the symmetry  
group 

S,i~ i = 0 ~-- e, ir/ i  , p , i~  i = O = p,ir/ i  (7) 

~i  k~k -- ~i k u k  = 0 = Ui,kr/k  -- ~ i , k u k  (8) 

From (3), (4a) and (8) one obtains 

V,i~ i = 0 ~-. V, ir/i , f~,i~ i = 0 = S2,ir/i (9) 

which means that  V, 12 in the adapted coordinates (6) depend on x I and 
x 2 alone. The integrability conditions of the Einstein equations (1), i.e. the 
Euler equations, reduce to 

-- P,i  = (~ -[- P ) ( Y , i  -]- e - V  r /kuk f2, i )  (10) 
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o r  

@ = - ( ~  + p ) (dV  + e - % k u  k dS2). (11) 

Hence, s and p must be functions of V and ~2. For r ig id ly  rotating bodies, 
the angular velocity/2 is a constant, 

/2 = constant . (12) 

In this case, c must be a function of p, 

= ~(v) ,  

and this equation of state determines the function p = p ( V )  (and ~ = c(V)) 
via the differential equation 

dp (13) 
~(v) + p = dV  " 

The equation of state must be chosen such that  the resulting pressure 
function has a zero V0, 

v(Vo) = 0 .  (14) 

Then 

v = v0 (15) 

may describe the star surface at which the pressure coincides with the van- 
ishing pressure of the vacuum region. V0 determines the relative red shift 

z = e - v °  - 1 (16) 

of photons from the surface received by an observer at infinity. 
As an illustration consider an incompressible material, 

g = ~o = constant . 

Here we get from (13) 

So(e  V ° - V  - 1) inside the star p(V) 
t 0 outside the star 

(zT) 

This pressure function is schematically represented on Figure 1. Other ma- 
terials could behave as sketched in Figure 2. 

It should be emphasized that  p is always continuous at V = V0 but need 
not be differentiable there. In our mathematical  analysis we consider p as a 
well-defined function of V from which s(V) can be derived via (13). 
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Fig.  1. Pressure function (17) for typical values Of neutron stars (nevertheless, 
the function is not realistic) 
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Fig.  2. Pressure functions for several "realistic" neutron star models. The deno- 
tation is explained in the context of Fig. 3 in paper  H (Herold and Neugebauer 
1902) 
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3 A Variational Principle 

In the adapted coordinate system (6) V(x) can be expressed in terms of 
the metric coefficients g ~  (/~, u = 3, 4). This follows from (4b). As a conse- 
quence, the state variables p(x), e(x), and ui(x) become functionals of the 
metric tensor, so that  the Einstein equations (1) reduce to a nonlinear sys- 
tem of partial differential equations for the components  gAB(X) and gt, v(x) 
of the metric tensor. 

It is the aim of the subsequent considerations to reformulate these dig 
ferential equations in the (coordinate-free) language of the minimal  surface 
calculus. For this purpose we consider a s tat ionary and axisymmetric space- 
t ime (e.g. in the form (6)) and define the action integral (neugebauer  1970) 

t=to 

over a space-like hypersurface t = to = constant.  (g is the fundamenta l  
determinant  g = det gik). 

To get an explicit expression for p, one has to choose an equation of 
state and to integrate the Euler equations (11). Since we want to confine 
ourselves to rigidly rotat ing bodies we may  fix a connection ~ = e(p) and 
integrate (13). The  resulting p depends, v ia  V, on the metric gik (cf. (4b)) 
and, besides of other constant parameters,  on the constants I10 (el. (17)) 
and $2 (el. (4b)). Thus,  L is a functional of the metric gik and a function of 
the red shift parameter  V0 and the angular velocity Y2. 

L = L{gik, V0, $2} (19) 

To derive a (global) Gibbs relation for L we compare two infinitesimally 
neighbouring states {gik, V0, ~2} and {gik + 6gik, 1Io + 617o, $2 + 60} . Then  
the variation of the mat te r  part  in (18) yields (cf. (13)) 

1 + + 
= 

+ x / ~  ((e + p)rliui e-V 612 + (¢ + p)6Vo) . (20) 

Finally, for variations 6gik vanishing at the boundary  of the doma in  of in- 
tegration we obtain (Neugebauer 1988) 

1 
~L = - ,7 ~S2 - Ac ~V0 - ~  ~ M  

2t% 
t=tO 

~Rgik -[- I~O Tiki , (9.1) 

where 
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T ik :---- (e + p) uiu k + pgik , (22) 

J := f d3x v f~( (~ . - I -p)e-vr l iu i ) ,  (23) 

t = t o  

t=to 

T/t' denotes the energy momentum of the perfect fluid of the rotating body. 
M is the total mass (energy) of the source (1/2.5M comes from a surface 
term) and ff is its angular momentum. From (21) we may conclude 

(i) 

(ii) 

(Z  -1- M )  ] =0  ,f ", .R ik 1 Rgik Ti k 
5 _ 2 - .  yo,a • -~ = -go (25) 

If R ik 1 Rgik Ti k 
- ~ = -ao  then 

~ ( L +  M )  = - J M 2 - A f S V o .  (26) 

The first statement implies that the Einstein equations of rigidly rotating 
bodies can be derived as Euler-Lagrange equations from a variational prin- 
ciple. This theorem remains valid for nonrigid (differential) rotation too (in 
this case one has to replace (13) by (11) (Kramer 1988)). Furthermore, the 
relations (i) and (ii) give rise to a thermodynamic interpretation: The ro- 
tating body (matter and field) is a thermodynamic system characterized by 
the thermodynamic potential 

M 
Z = L + T ' (27) 

which depends on the order parameter gik(X) and the control parameters 
J'2 and V0. The equations in (i) define the equilibrium state of the system, 
i.e. the Einstein equations are the equilibrium conditions. For equilibrium 
states (solutions gik(x) of the Einstein equations), L = L + M/2  is an Gibbs 
potential satisfying the Gibbs relation 

5£ = -J ~ - X 5Vo (28) 

and yielding the 'global' equations of state 

M = MWo, ~), S = S(Vo, ~) (29) 

which connect the exterior (far field) parameters mass M and angular mo- 
mentum ff with the interior parameters V0 and Y2. To derive the constitutive 
equations (29) from £ the following equilibrium relations are useful: 
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1 / M (30) 
z= T 

t= to  

M = 2 Off  + f d3x v/-S~(s + 3p) (31) 
t= to  

A/" = M - Off - £: = / d 3x x/-~(e + p ) ,  (32) 

t= to  

where we have employed the Einstein equations (25) and the Killing equa- 
tions (3). By means of (32), the Gibbs relation (28) takes the form 

6/: = -,7 612 - ( M  - / 2 J  - £ )  6V0 (33) 

o r  

,58 = e-V°(6M - 06,7") 

after a Legendre transformation 

(34) 

S = e-V°(M - £ - $2,7). (35) 
For a solution gik(x), £: = £(V0,/2) can be calculated from e = ~(V) and 
p = p(Y) via (30), (31) and (23), in principle. (A more convenient algorithm 
will be given in the next section, cf. (46)). 

Now the parameter relations (29) are a simple consequence of (33), 

M = nj + £- , ff - F A  (36) 
vo 

4 M i n i m a l  Surface  Formula t ion  

We define in an invariant way four gravitational potentials, the Newtonian 
potential U, the gravitomagnetic potential A, the axis potential W and the 
superpotential a: 

e 2 v  = - -  ~ i~  i , A =- - - e - 2 V r l i ~  i 

W 2 = (T / i~ I )  2 - -  ~7k77 k ~i~ i , e - 2 a  = e - 2 U w ,  i w  'i  (37) 

In terms of these potentials the line dement (6) reads (Neugebauer and 
Herlt 1984) 

ds2= e-ZV (e2aW, cW, o hCOhABdxAdx B + W2d~ 2) 

- eZU(dt + Adqo) 2 , (38) 

where U, A, W, a only depend on xA(A = 1,2). U is the generalization 
of the Newtonian gravitational potential for weak fields. A represents the 
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rotation of the source and plays the same role as the azimuthal compo- 
nent of the electromagnetic vector potential does for rotating charges. For 
rotating stars, its order of magnitude compared with the centrifugal poten- 
tial, 2~2A/I22R2(R : radius of the star), varies between 0.2 (rapidly rotating 
neutron stars) and 10 -7 (sun). In a Minkowski space, W = ~ (~, z, 7~: cylin- 
drical coordinates) measures the distance from the symmetry axis (z-axis) 
of a rotational body. The denotation 'super potential' comes from chiral 
field theory. 

Inserting the metric (38) in the Lagrangian (18) and taking advantage 
of the axisymmetry one obtains after a straightforward calculation 

f.. = L + __M2 = --2r~¢o / d2x vf~' (39) 

22 

where 7 is the determinant of the coefficients 7AS (A, B = 1, 2) of the first 
fundamental form (metric) of the 2-surface ~ , 

U ----- u ( x l , x 2 )  , A = A ( x l , x 2 ) ,  

W = W ( x l , x 2 ) ,  ol = a ( x l , x 2 ) ,  (40) 

embedded in a (Pseudo-)Riemannian Potential Space (RPS) with the line 
element 

e 4U 
dS 2 = - 2  da d W  + 2 W  dU 2 - 2---W dA2 - 2n0W e 2 " - 2 V p ( V ) d W  2, (41) 

where p is a given function of the co-rotating Newtonian potential V, 

1 ln(-1) (¢ + (¢, + V=~ 

= U + ~ I  l n ( [ l +  12A] 2 - $22W 2e -4U) . (42) 

By the same straightforward calculation it turns out, that the surface 
metric 

e4U 
"tAB = -- (a,A W, B + a,B W,A) + 2 W  U, AU, s - ~ A,AA,B 

- 2~0W ~"-2Up(V) W,A W,B 

is conformally equivalent to the space-time metric hAB , 

"YAB = )t hAB , (• a conformal factor) 

so that hAB in (38) can be replaced by "lAB , 

d8 2 .= e -2U (e2otW, c W ,  D,yCD TA B d x A d x  B + W2d~p 2) 

- e2U(dt + A d T )  2. 

(43) 

(44) 

(45) 
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Obviously, (39) provides a geometrical interpretation of the Lagrangian £: 
/: is (apart from the factor 27r/n0) the area .A of the surface S , 

£ =  2 ~ A .  (46) 
t~ 0 

Now we can geometrize the relations (21), (25), and (26). Eq. (25) tells us 
that the Einstein equations for axisymmetric stationary gravitational fields 
of rigidly rotating bodies are equivalent to the statement 

5 f d 2 x  v ~ = 0 ,  (47) 

i.e. the surfaces (40) are "minimal" surfaces (Neugebauer and Herlt 1984, 
Neugebaner 1979, 1985). We choose this term for the sake of simplic- 
ity, merely. (Correctly, we should say that A has a stationary value for 
the surfaces considered). Hence, the axisymmetric and stationary grav- 
itational fields of rigidly rotating bodies are 'minimal' surfaces in the 
(Pseudo-)Riemannian Potential Space (41). Moreover, the thermodynamic 
potential/~ is essentially the area of the 'minimal' surface, cf. (46). 

Now the gravitational field equations are the Euler-Lagrange equations 
of the geometrical variational principle (47). Having solved those second 
order equations, i.e. having calculated the four fields (40) one obtains TAB 
in (43) by differentiation and finally the space-time metric (45) without any 
further integration. 

5 P a r a m e t r i z a t i o n s  of  the  M i n i m a l  Surfaces  

Without loss of generality we may choose surface coordinates xA(A = 1, 2) 
such that TAB is conformMly euclidian, 

TAB = A1 5AB (/~1 a conformal factor) . (48) 

Introducing the more compact notation 

{~o i} = {~], A, W, c~} , dS 2 = Gik dqoid~o k (49) 

for (41) and denoting the 2-dimensional gradient by V ,  the Lagrangian (39) 
can be written as 

f.. = 7rico / d2x Gik V~o i" Vqo k • (50) 

The Euler-Lagrange equations corresponding to (47) 

A %o i + Pikt V~ k • V~p I = 0 (51) 
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are a system of semilinear partial differential equations of second order (A 
is the 2-dimensional Laplacian and F~l the Christoffel symbol of the RPS 
metric Gik). Additionally, the auxiliary conditions (43) with (44) have to 
be taken into consideration. 

We win use this Weyl parametrization (see (45) for static fields (A = 0)) 
for our numerical calculation in part II,  cf. (3) and (6) there. 

If one chooses the parametrization 

W = W ( U , A ) ,  a = a ( U , A ) ,  (52) 

the Euler-Lagrange equations reduce to two second' order partial differential 
equations ('minimal' parametrization). 

6 Physical Minimal Surfaces 

The interior parameters 170 and f2 are well-suited to classify rotating body 
solutions. No exact rotating body solution is known in the general case 
(V0 ~ 0, f2 ¢ 0). The generation techniques (B£cklund transformations, In- 
verse (scattering) method) for asymptotically flat vacuum solutions are not 
applicable to the interior of the body. Approximative solutions for discs (ro- 
tating dust) were discussed by Bardeen and Wagoner (1969, 1971). In this 
case the analysis reduces to a boundary value problem for the vacuum equa- 
tions (e.g. the Ernst equations). Recently, Meinel and Neugebauer (1992) 
have found the exact solution of this problem by solving the corresponding 
Riemann-Hilbert problem. In the following three cases explicit solutions are 
known: 

(i) 0 _< IV0[ < co ,  ~ = 0 : 'Static stars' 

(ii) [V0[<< I, ~ ¢ 0:  'Newtonian stars' 

(iii) IV0l>> 1,  ~2 • 0:  'Black Holes' 

We will end up with some remarks on these three cases: 

(i) All ~tatic spherically symmetric minimal surfaces (interior and exterior 
fields) can be written in the form 

= 1 + w f ( u )  , (53) 

where f (U)  has to satisfy an ordinary second order differential equation. To 
incorporate the boundary conditions (Section 7) the following parametriza- 
tion is more convenient: 

e -2a = 1 -k B sin: 0 

W = A sin O , (54) 
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where A and B are functions of U alone. The boundary (regularity) con- 
dition on the symmetry axis (0 = O, 7r) is then automatically satisfied. To 
ensure W = 0 in the center (U = Uc) and a = 0 at infinity (U = O) we 
have to postulate 

A(Uc) = 0 ,  B(0) = 0 .  (55) 

The minimal surface equation takes the form 

i I+B (56) 
A I ( U )  = A B -  n o P A  2 ' 

i 1+ B (57) B ' ( U )  = (4no P A  2) B - n o P A  2 ' 

p : =  p ( V ) ~  -~U . (58) 

An algorithm for a numerical solution of this system under the conditions 
(55) was given in (Neugebauer 1990). 

( i i )  The 'Newtonian' Potential Space 

d S  2 = - 2  d W d a  + 2 W  dU 2 - 2 n o W p ( V ) d W  2 (59) 

follows from (41) for A - 0, a << 1, U << 1. In this approximation, V takes 
the form 

1 ~2 W 2 (60) V = U - -~ 

The first incompressible fluid solution found by Maclanrin describes the field 
of a rotating 2-axial oblate ellipsoid bounded by the surface 

1 122W ~ v - v - ~  =Yo. (61) 

Here, the Gibbs potential £ takes the form 

£ = e 2 l , (62) 

where e is the constant mass density (l is a well-defined function of $2/v~ ). 
A survey of other Newtonian solutions of the rotating body problem 

may be found in (Chandrasekhar 1969). They can be used to test numerical 
solution techniques for 'minimal' surface equations. 

( i i i )  Black Hole thermodynamics is closely related to the parameter  ther- 
modynamics (34) (Neugebauer 1985). 
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7 Boundary Conditions 

The 'natural '  border of the 'minimal '  surface is the symmet ry  axis (z-axis) of 
the body, its equatorial plan (if it exists) and a circle at infinity connecting 
axis and equatorial plane (Fig. 3). (In what  follows, we will postulate  reflec- 
t ion symmetry  and therefore the existence of an equator.) The  conditions 
defining the axis, the equator and infinity can be taken from Fig. 3: 

Z 

""°'""°'"'...,.., ....,. 

""-...... 
"'.... 

"'%. 

Axis: 

W = 0  

A = 0  

a = 0  

Infinit r: 

U . . = O  , 

A = O ,  

Equator: 
i 

OU OA OW Oa '" 
- 0  

Oz Oz Oz Oz 

W - ~ - L 0 ,  

a = O  

Fig. 3. The boundary conditions on the border of the 'minimal' surface (symmetry 
axis, equatorial plane and infinity) 

The axis conditions express microeuclidicity (a  = 0, cp. (Kramer et al. 1980) 
and symmetry  around the axis ([qi[ ~ 0, cp. (37)). Since the gravitational 
potentials are symmetric  with respect to the equator,  their normal  deriva- 
tives have to vanish there. At infinity, the space-time (45) is minkowskian 
(in cylindrical coordinates). It should be ment ioned that  the border is a 
null curve (dS  2 = 0), whereas the metric of the 'minimal '  surface inside the 
border is definite. 
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1 I n t r o d u c t i o n  

The first observation of millisecond pulsars in 1982 (Backer et M. 1982) 
has stimulated the research on rapidly rotating neutron stars, particularly 
as in the meantime the number of observed sources in this category has 
steadily increased. Since neutron stars are extremely compact objects with 
strong gravity (for a typical neutron star the ratio between radius and 
Schwarzschild radius is approximately 2), general relativity must be em- 
ployed in modelling such stars in order to be able to draw definite conclu- 
sions from the observations. 

General relativistic calculations of rotating neutron stars are relatively 
rare. The case of slow rotation has been treated for the first time by Har- 
tle and Thorne (see Hartle 1967; Hartle and Thorne 1968) and later by 
other authors (see Datta 1988, e.g.). The construction of realistic models 
for rapidly rotating neutron stars has been performed by Friedman et al. 
(1986) (see also Friedman et al. 1989) derived from a method developed by 
Butterworth and Ipser (1976). The numerical method employed by these 
authors is based on the idea to discretize directly Einstein's field equations 
for a chosen parametrization of the metric (to be more precise, they use the 
linearized equations obtained by Newton's method). To the authors' know- 
ledge, there are no other groups which have developed another independent 
approach for the problem of rapidly rotating neutron stars. 

In this contribution we will show that the minimal surface formalism, as 
described in Neugebauer and Herold (1992) (in the following cited as paper 
I), is well suited for the numerical calculation of the gravitational fields and 
the structure of rapidly rotating neutron stars. Especially the minimal sur- 
face extremum principle facilitates the procedure of discretizing very much, 
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since it is not necessary to consider the field equations explicitly which are 
ra ther  complicated indeed. After a short description of the basic formula- 
t ion of our  approach in Sect. 2, the numerical  procedure is explained in 
some detail in Sect. 3. Typical results of the numerical  calculation are pre- 
Sented in Sect. 4, where the gravitational fields as well as global propert ies 
of fast rotat ing neu t ron  stars are discussed. Fur thermore ,  the solutions are 
visualized by embedding  diagrams and 4D ray-tracing pictures. 

2 Bas ic  F o r m u l a t i o n  

In this section the  basic equations are summarized  which are used for the 
description of the s t ructure  of rapidly rotat ing neut ron  stars and their grav- 
i tational fields (for more  details, see paper  I). The  space-time generated by 
an isolated rotat ing star admits  two commut ing  Killing vectors: the Cat least 
asymptotically) time-like vector (~i) = O/at and the space-hke (azimuthal)  
vector (7/i) = 0/a~o. Additionally, it is assumed tha t  the ma t t e r  is a perfect 
fluid with the ene rgy-momentum tensor 

T~k = (~ + p) ~ + pg~k (1)  

and rotates rigidly with the angular velocity $'2. Thus,  the four velocity is 
given by 

~ = ~ - v ( ¢  + nr/~) (2) 

The  minimal  surface formulat ion for the s tat ionary and axially symmet -  
ric field equations requires tha t  the metric is parametr ized in the following 
form: 

d, ~ = - e  ~~ (dr + A d ~ )  ~ + c - ' ~  ( c ~  ( V W )  ~ (d~ ~ + ~2d0~)+ W ' d ~  2) (3) 

Therein,  we have specialized the - in principle arbi trary - "meridional" 
coordinates a: 1, ~2 (which are needed additionally to the Killing coordinates 
t, ~0) to spherical coordinates r, 0, which are related to the  quasi-Euclidean 
cylindrical coordinates p, z by p = r sin 0, z -= r cos 0. The  gradient  opera tor  
is used here in the normal  Euclidean meaning,  i.e. ( V W )  2 = W~ + 1 / r  2 W.~. 
It  should be noted  that  the potentials U(r, 0), W(r,  0), A(r, 0), a(r ,  0) are 
scalar quantities which can invariantly be defined th rough  the Killing vectors 
(see paper  I). 

The  normalizat ion of the four vector (2) of the ma t t e r  yields an expres- 
sion for the quant i ty  V, which represents in the non-relativistic limit the 
sum of the Newtonian and the centrifugal potential: 

1 [2~W2e_4u) V = U + ~ In ((1 + S2A) 2 - (4) 

A consequence of ene rgy-momentum conservation is tha t  the energy density 
as well as the  pressure p only depend on V and are related by 
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dp (5) 
e(p) + p = dV  

For a given equation of state (EOS) s = s(V), the differential equation (5) 
can be integrated to obtain the function p = p(V) .  The zero point of V is 
fixed by the prescription of vanishing pressure on the surface, p(Vo) = O. 

Thus, the parameters which characterize a rigidly rotating neutron star 
are the angular velocity ~2 and the surface gravity V0, which describes the 
compactness of the system. 

It can be shown (Neugebauer and Herlt 1984; Neugebauer 1985, 1988) 
that,  for the situation described, Einstein's field equation are equivalent to 
the minimal surface equations in an abstract Pdemannian potential space 
with a we•defined (indefinite) metric, whose coordinates are the potentials 
U, W, A, a. Without  describing this geometric interpretation in detail (see 
paper I), one can formulate the problem with the help of an Lagrangian/ : ,  
whose variation must  vanish, 61: = 0. The Lagrangian is given by 

"t" 

2G 

oo [ e4U 2 
dO 

] 

= _ _  

(6) 

and should be considered as a functional of the 4 potentials a(r ,  O), W(r, 0), 
U(r, O), A(r, O). Here, we have additionally assumed symmetry with respect 
to the equatorial plane (z = 0 or O = 7r/2). The admissible functions a, W, 
U, A must fulfill the boundary conditions 

on the rotation axis (p = r sin 8 = 0): 

a = 0 ,  W = 0 ,  A = 0 ,  (Ta) 

at infinity (r --~ oo): 

a = 0 ,  U = O ,  A = 0 ,  W - r s i n O = 0 .  (7b) 

The potential U must  be regular on the rotation axis. Furthermore, the 
unconstrained variation of (6) yields the natural boundary conditions on 
the equatorial plane 

Oa OU OA OW 
0--e=°'  0e = ° '  0o = ° '  0e - ° '  (7c) 

which express the reflection symmetry. 
Note that  it is an essential feature of our formulation that  there is no 

distinction between the interior and the exterior of the star; both regions 
are treated simultaneously. The outside is just characterized by p ( V )  = O, 
i.e. the last term in (6) vanishes. The position and shape of the surface come 
out automatically from a self-consistent solution. 
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3 N u m e r i c a l  P r o c e d u r e  

In order to calculate the s t ructure  of rapidly rotat ing stars, a convenient 
procedure is to start  f rom a non-rota t ing star and to increase the angular  
velocity gradually. Therefore, in the following section we want to describe 
non-rota t ing neu t ron  stars as our s tar t ing point.  

3 .1 S t a r t i n g  P o i n t :  N o n - R o t a t i n g  N e u t r o n  S t a r s  

The  usual  parametr iza t ion for a static, spherically symmetr ic  metr ic  reads 
(see Wcinberg 1972, e.g.): 

d8 ~ = - J "  a t  ~ + e ~;' a~ ~ + ~ ( d O  ~ + sin s 0 a~o ~) (8) 

with the potentials u = u(F) and ~ = A(f) being only dependent  on the  
radial coordinate ~. (We use here a modified nota t ion for this coordinate to 
distinguish it clearly f rom the radial coordinate r in the metric (3) which 
will be used for the non-rota t ing as well as the rotat ing case.) 

Einstein 's  field equations for a perfect fluid with the ene rgy -momen tum 
tensor (1) lead to the following equations (known as Tolman-Oppenheimer-  
Volkoff (TOV) equations) 

f 
dr, G(m + 4v~ap) 
d-~ = f2(1 - 2Gm/F) (95) 

d~_= - ( ~ +  p)~_ (9c) 

for the potent ial  v and the pressure p (which is related to the energy density 
by the equat ion of state ~ = c(p) or p = p(~), respectively), while the  other  
potential  A is given by the algebraic relation 

e - ~ = l  2G.~(~) . (9d) 

To obtain a solution of (9a-d),  one integrates f rom the center (i.e. F = 0) 
s tar t ing f rom a given central density c : ~c (corresponding to a central 
pressure p : Pc) up to the radius { : R where the pressure p vanishes 
(assuming as boundary  condition vacuum outside the star). This  yields then  
the total  mass  M = re(R) and by variation of the central density the mass- 
radius relation for the considered equation of state. (Typical results for 
various EOSs can be found in Shapiro and Teukolsky (1983), e.g.) 

Since we want to use the non-rotat ing solutions as the star t ing point  for 
the calculation of rapidly rotat ing neut ron  stars, it is appropria te  to trans- 
form the TOV equations to the coordinates which appear  in our general 
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metric (3). Specializing (3) to the case a = 0 (no rotation) is equivalent 
to setting A = 0. Thus, the comparison with the "Schwarzschild coordi- 
nate" form (8) reveals that  a radial coordinate t ransformation is sufficient, 
while the angle coordinates 0 and ~o can remain unchanged. The explicit 
t ransformation formulae read: 

(10a) 
W = e ~ f sin 0 =: W0(r) sin 0 (10b) 

d~ r -~ (10c) 
dr r 

) e -~= = 1 + k, W02 1 sin = 0 (100) 

so that  in the non-rotat ing case the potentials U and W0 = IV/sin 0 only 
depend on r, and for a we obtain the relation e x p ( - 2 a )  = 1 +f (U)  W 2 with 
a well defined function f(U).  (In special cases, e.g. for the inner and outer 
Schwarzschild solution this function has a simple analytic form (Neugebauer 
and Herlt 1984).) 

Thus, combining (9) and (10) yields the following ordinary differential 
equations 

d~ 1 [~(~ 2Gin)]½ ( l l a )  
dr  r 

dm ~2 
dr = 4~r--r [~(~ - 2Grn)]½ e(p) ( l l b )  

dU = G(m + 47r~3p) ( l l c )  
dr  r [g(g - 2Gin)] ½ 

Since for 1"2 = 0 the quanti ty V is identical to the potential U, the pressure 
function p = p(V), which characterizes the mat ter ,  is actually a function of 
U, and e(p) in ( l l b )  must  be determined from ¢ = - p  - dp/dV. 

The integration of ( l l a - c )  is performed as usual: Starting at r = 0 with 
appropriate initial conditions (the essential parameter  is here the difference 
Uc - U0 between the potential U at the center and the potential U on the 
surface) one arrives at the surface when p = 0. There, matching to the outer  
Schwarzschild solution, which can be writ ten in our coordinates as 

eU = r -  ½GM 
r + ½GM (12a) 

W = (r - (GM) 2/4r) sin0 (12b) 

(aM) 
e -2= = 1 + (r - (aM)2/4r)2 sin2 0 , (12c) 

where the Schwarzschild radial coordinate ~ is 
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1 GM)2 (r+~ 
-- , (12d) 

?, 

yields the mass and the radius of the non-rotating star. 

In Fig. 1 we show typical results (equation of state MPA, see Sect. 4.1) 
for the density profiles c = ¢(r) of non-rotating neutron stars for three 
values of the surface gravity parameter  V0, corresponding to gravitational 
masses of M = 0.476Mo, M = 1.384Mo, and M = 1.559Mo, respectively. 
When  the central density is increased the radius of the star decreases. Note 
that  the radii which can be read up from this figure are smaller than the 
radii measured in the "normal" Schwarzschild coordinates (see Tables 1-3). 
This, of course, originates from our choice of coordinates and demonstra tes  
once more that  for such strongly gravitating objects  one has to be careful 
in giving observable quantities. 
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Fig. 1. The density profiles of three non-rotating neutron stars with different 
masses. The values of the surface gravity parameter V0 are -0.07, -0.3, and 
-0.4455 in the order of increasing central density. These values yield the neutron 
star masses M = 0.476111/o, M = 1.384Mo, and M = 1.559M®, respectively. 
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3.2 Solution of the V a r i a t i o n a l  Principle 

For rapidly rotating stars, wc must solve the variational principle 6L: = 0, 
i.e. we have to determine those metric potentials a, W, U, A for which the 
variation of the integral (6) vanishes. 

The domain 0 < r < oo, 0 < 0 < ~r/2 of the coordinates (r, 0) in 
(6) is unbounded and thus not very suitable for the numerical treatment. 
Therefore, we transform the coordinate r to a new coordinate ~, which 
has a finite domain, e.g. 0 ~ ~ < 1, by the definition r = S(~) with a 
monotonic function S, which should satisfy S(0) = 0 and S(1) = oo. There 
are various possibilities, but a choice which was flexible enough in our actual 
calculations is 

r 
r = S(~) = co-- or ~ -- , (13) 

I - ~  r + c 0  

where the constant co can be adapted approximately to the radius of the star 
(this means that  the surface of the star is in the middle of the ~ domain).  
Additionally, instead of the angle 8 we use # = cos 0 as the second inde- 
pendent  coordinate (this avoids the numerically somewhat  more expensive 
trigonometric functions) such that the domain of the variational integral (6) 
is the unit square in (~,/~). 

It turned out  during the numerical calculations that  it is the best proce- 
dure to implement the boundary  condition (7b) for W in the following form. 

Since W - r sin 0 = O(1 / r )  for r ~ 0% a new function W is introduced by 

W = r s i n 0  + (1 - ~ ) W  (14) 

Then, because of (13) the modified potential W takes finite values at infinity, 
which in general are not zero. As the potential a is strongly coupled to W in 
the functional (6), we had to use instead of a also a new function ~ defined 
by 

= (1 - a (15) 
Using the behaviour a = 0(1/r2) ,  which can be deduced from the field 
equations, it foUows that  also ~ takes non-vanishing values at infinity. 

In summary,  the actual functional which is used in the numerical calcu- 
lations can be writ ten in the form 

c =  

( 1 6 )  

To d e t e r m i n e  the  4 funct ions  ~ = ~(~, ~),  n = W(~, ~), U = cr(~, ~), 
A = A(~, i~), one has to discretize the integral (16). A natural  way is to ap- 
ply the Finite Element approach (see Zienkiewicz 1977, e.g.). The domain is 
divided into Ne elements with a number  of node points (usually at the cor- 
ners and edges of the elements) which simultaneously belong to neigbouring 
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elements. On each element an unknown function is approximated by a low 
order polynomial interpolation through its values at the node points. Thus, 
e.g. the potential U is given by 

U(r'lZ) = E U'~f'*(r'tz) (17) 
n 

where U,~ are the node point values of U and f,,(~,/z) are the polynomial 
shape functions. In total, one has N= node points and approximately 4N= 
unknown function values. (The number of unknowns is somewhat smaller 
than 4Nn after the boundary conditions (7a,b) have been taken into ac- 

count . )  Since the functional (6) is non-linear in the potentials, in the integra- 
tion over each element one has to employ a numerical integration procedure, 
usually a Ganf~ integration formula. 

Since here the domain is a unit square, we have used a very simple finite 
dement  discretization, namely rectangular 4-node bilinear finite elements 
with Gaug-Legendre integration formula. As the results with these ansatz 
were satisfactory, it was not necessary to turn to more complicated finite 
elements. 

If we denote the set of unknown potential values by Xi (i = 1, N), then 
the discretized Lagrangian (16) is a (non-linear) function of these variables, 

£ = f - . ( X 1 , . . . X N )  (18) 

The discretized field equations are equivalent to 

0£ 
F, (X)  -- -~-~i(X) = 0 (i = 1 , . . . N )  (19) 

This non-linear system of algebraic equations is then solved by the Newton- 
Raphson method,  i.e. by the iteration 

OFi 

where the superscript (k) denotes the stage of the iteration. The Newton 
matrix 

O Fi 02£ 
- ( 2 1 )  

oxj ox~oxj 

is a symmetrical matrix and can be calculated analytically. (Unfortunately, 
it is not positive definite, otherwise the solution of the linear system (20) 
would be easier.) At each Newton step we use a direct sparse matrix solver 
as linear equation solver. 

After convergence we have got a solution represented by the node point 
values of the 4 potentials a, W,  U, A. The actual procedure is to start 
from a non-rotating solution (see Sect. 3.1), to calculate the potentials on 
the finite dement  grid, to determine a converged solution for ~2 = 0 by the 
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finite dement  iteration (the comparison with the solution from the modified 
TOV equations gives a good estimate of the discretization error), and then 
to change the input  parameters $2 and/or  I/0 slightly to obtain a new solution 
with the old solution as the starting point of the iteration. The procedure 
which turned out to be most efficient was to fix the surface gravity parameter  
V0 (this determines the mass, at least to a great extent) and to increase the 
angular velocity ~.  

4 R e s u l t s  

As has been already described in Sect. 2, an essential ingredient for the 
calculation of realistic neutron star models is the equation of state, i.e. 
the rdat ion p = p(¢) between pressure p and energy (or mass) density c. 
Therefore, in the next section we make some remarks on this topic. 

4.1 E q u a t i o n  o f  S t a t e  

Up to densities of roughly 1014 g /cm 3 the equation of state p = p(¢) of 
cold catalyzed neutron star mat ter  is well known and the physics up to 
this region is well understood (see Shapiro and Teukolsky 1983, e.g.). But 
around the nuclear saturation density (3 1014 g /cm 3) and especially above, 
the situation concerning the EOS is more complicated, on the one hand 
due to the uncertainties of the parameters of strong interaction, and on 
the  other hand due to the complexity of the nuclear many-body problem. 
Therefore, a lot of different EOSs for neutron stars exist in the literature 
(for a review see Arnett and Bowers 1977; Glendenning 1988, e.g.). Since, 
in this contribution, the main point is to discuss objects with strong gravity 
(here: neutron stars) and their behaviour in rapid rotation, we do not want 
to discuss the problem of EOSs in more detail. Just to give the reader a 
rough impression of how different reasonable EOSs vary in the "region of 
uncertainty" we present in Fig. 2 the overall behaviour of that  EOS (MPA, 
see Wu et al. 1991) which has been used in producing the results given in 
the next section, while in Fig. 3, a comparison between this EOS and three 
other ones, namely EOS BPS (Baym et al. 1971), EOS G (Canuto and Chitre 
1974; notation as in Arnett  and Bowers 1977) and the pion-condensed EOS 
7r (Weise and Brown 1975) is given. 
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Fig.  2. The equation of state MPA, p = p(~), for the whole density range. The 
picture shows log p in dyn / cm  2 versus log e in g / cm 3. 
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Fig .  8. Comparison of the equations of state BPS, G, MPA, and ~r around nuclear 
density and above. The units are the same as in Fig. 3. 
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4.2 Metr ic  P o t e n t i a l s  

For various EOSs we have calculated solutions for many  combinations of 
the basic parameter  V0 and £2, but  to discuss the behaviour of the metric 
potentials U, W, A, and a,  it is sufficient to consider only one EOS. We 
have chosen the equation of state MPA. Furthermore,  we restrict ourselves 
to one paramete r  value of V0, namely V0 = -0 .3 .  The gravitational masses 
of those neutron stars vary approximately between 1.38 M o and 1.40 M o 
for all possible values of the angular velocity £2 (see Table 2). (This example 
shows, as claimed before, that  also for rapid rotation the essential pa ramete r  
which determines the mass is the surface gravity.) Additionally, it turns out 
that  the metric potentials are very similar in their qualitative behaviour 
for different rotation rates. Thus, we consider here only the model with 
the m a x i m u m  angular velocity, i.e. for V0 = -0 .3  the solution with £2 
8.95 l0 s s -1. (see Sect. 4.3) For this neutron star, in Figs. 4-7 the metric 
potentials U, W, a,  and A are shown in their dependence on the coordinate 
r along radial rays from the center to infinity with the angles 8 = 0 °, 15 °, 
30 °, 45 °, 60 °, 75 ° , 90 °. 

The line which is crossing the different curves in each picture connects 
points on the surface of the star so that  one can distinguish the inside and 
the outside. Comparing the polar radius and the equatorial radius reveals a 
ra ther  large deformation due to the rapid rotation. Nevertheless, the split- 
ting of the "Newtonian" potential U (see Fig. 4) in different directions is 
relatively small. An essential effect of the rotation is that  the depth of this 
potential is decreased when the angular velocity is increased. 

As the potential W represents a sort of distance from the rotation axis, 
we have plotted in Fig. 5 the difference W - r sin 0 (scale of W is the di- 
mensionless length unit). For £2 = 0, this quantity (as well as W itself) is 
proportional to sin 8, but  this property is lost when the rotation is taken 
into account. 

The potential a is similar to W - p  as can be seen in Fig. 6. A difference 
is its 1 / r  2 behaviour at large r compared to the 1 / r  dependence of W - p. 

In Fig. 7 the gravitomagnetic potential A is presented, which vanishes 
in the non-rotat ing case. For small angular velocities it is proportional to 
sin 2 8 (this can be deduced from Hartle (1967), e.g.), but  this is no longer 
true for rapid rotation, as can be recognized from Fig. 7. 

4.3 G l o b a l  P r o p e r t i e s  

In this section we will discuss some global properties of typical solutions. 
First, there is the gravitational mass (total mass) M which characterizes a 
star. This quanti ty can be measured asymptotically through its gravitational 
action. Quantitatively, this means that  near infinity the potential U can be 
approximated by U ,.~ - O M / r ,  which leads to the mass formula 
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Fig.  6. The potential a for the same model as in Fig. 4. All other remarks in the 
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332 

c M = Um U) (22a) 

Alternatively, the total  mass has been calculated by an integral over the 
mat te r  distribution (see paper  I). Similarly, the angular momen tum J is 
an asymptotically measurable quantity (by Lense-Thirring precession, e.g.). 
Therefore, we have an analogous formula: 

G J= llm ( r A) (22b) 
r--oo 2 s~n ~ 0 

Relation (22b) can be evaluated for various values of O, which should al- 
ways give the same result and thus is a test of the numerical accuracy. 
Additionally, we have calculated the angular momentum of our solutions 
by the appropriate integral over the mat te r  (see paper I). All these differ- 
ent methods  for the determination of M and J are in good agreement ( the 
deviations are of the order of 0.1 percent or smaller). 

The baryon mass (or equivalently the total number  of baryons) cannot 
be determined from the asymptot ic  fields, rather one has to integrate over 
the interior of the star (for the formula, see paper I). 

In Tables 1-3 we present a series of solutions which are typical for our 
results and have been calculated with the equation of state MPA. Beside 
the total mass M and the baryon mass M0, the central density ec, and the 
equatorial radius R (measured by the circumference) are shown. From the 
angular momen tum J the moment  of inertia I, defined by the (Newtonian) 
relation I = J / O ,  is calculated. Additionally, the value of the Lagrangian 
L: (in units of M o )  is given. 

Table  1. Results for the EOS MPA for V0 -- -0.07. The angular velocity $2 is 
given in s -1, the central density ~c in 1015 g/cm 3, the total mass M and the 
baryon mass M0 in units of the solar mass Mo, the equatorial radius R in km, 
the moment of inertia I in 1045 gcm 2, and the Lagrangian L: in units of Mo. 

~2 ec M M0 R I Z: 

0 0.74 0.476 0.494 10.77 0.245 0.0195 
1255 0.73 0.474 0.492 10.90 0.248 0.0194 
2509 0.71 0.470 0.487 11.47 0.256 0.0191 
3137 0.70 0.467 0.484 12.04 0.263 0.0188 
3764 0.67 0.463 0.479 13.40 0.275 0.0185 ~ 
3952 0.67 0.462 0.477 14.41 0.279 0.0184 
3990 0.66 0.461 0.477 15.65 0.280 0.0183 
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Table  2. Results for the EOS MPA for V0 = -0.3. The different quantities are 
given in the same units as in Table 1. 

~2 ec M M0 R I £: 

0 2.39 1.384 1.578 9.06 0.866 0.223 
5019 2.21 1.382 1.567 9.49 0.918 0.217 
6274 2.11 1.381 1.562 9.81 0.956 0.213 
7528 1.98 1.383 1.556 10.38 1.022 0.208 
8156 1.89 1.386 1.554 10.88 1.077 0.205 
8783 1.78 1.393 1.555 11.88 1.168 0.202 
8909 1.75 1.396 1.556 12.52 1.196 0.201 
8946 1.74 1.397 1.557 12.89 1.206 0.201 
8953 1.74 1.398 1.557 13.35 1.207 0.201 

Table  3. Results for the EOS MPA for V0 = -0.4455. The different quantities are 
given in the same units as in Table 1. 

~2 ec M M0 R I L: 

0 5.09 1.559 1.834 7.81 0.847 0.396 
3137 4.90 1.565 1.839 7.90 0.863 0.394 
6274 4.30 1.590 1.862 8.24 0.933 0.386 
8783 3.65 1.624 1.890 8.82 1.048 0.376 

10038 3.25 1.650 1.910 9.37 1.152 0.369 
10872 2.92 1.677 1.932 10.06 1.271 0.363 
11293 2.72 1.699 1.950 10.78 1.373 0.359 
11456 2.63 1.711 1.961 11.74 1.434 0.358 

In each table the angular velocity increases from zero to the maximum 
possible angular velocity, which corresponds to that  solution in which the 
star rotates at the Kepler frequency ~2K, i.e. the angular frequency of a 
particle in circular orbit at the equator  (cf. Friedman et al. 1986). For the 
metric (3), 

t 

,4' (.4 wv')) 1 e4 u + 2AU' + + 
f2K = ~ W ( W '  - WU' )  - de4V(d  ' + AU')  , (23) 

where primes denote partial derivatives with respect to r and all quantities 
a re  evaluated at the equator  (r = req , 0 : 7r/2). 

No rigidly rotating star can have ~ > ~2K and at this point mass shed- 
ding at the equator  sets in. Certainly, this is the endpoint of such a series 
of increasing angular velocity. But  that  does not mean that the solut ions 
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up to this point are stable. There are instabilities due to non-axisymmetric  
modes which produce gravitational radiation, but  those modes are damped 
by shear viscosity inside the star, which is believed to strongly depend on 
the temperature .  These effects have been understood for non-relativistic 
stars, but  a quantitative t rea tment  in the relativistic regime is lacking (see 
Weber et al. 1991 and references therein). 

As general trends in Tables 1-3 one recognizes that  with increasing an- 
gular velocity the central density diminishes, the equatorial radius is going 
up as well as the moment  of inertia. The last effects are dear ly  an indication 
of rotational flattening of the star. In the next section we will see this more 
dearly. 

4.4 V i s u a l i z a t i o n  by  E m b e d d i n g  a n d  4D R a y - T r a c i n g  

The gravitional potentials shown in Sect. 4.2 depend on the meridional co- 
ordinates r and 8 and, thus, their visualization as functions of these coordi- 
nates is not invariant against coordinate transformations in the meridional 
plane. There  are certainly many  possibilities to characterize the gravita- 
tional fields and the structure of the star in a coordinate-independent man- 
ner. We have chosen two methods: 

First, we have calculated embedding diagrams which visualize the intrin- 
sic geometry of the surface of the neutron star and of internal surfaces of 
constant pressure (or density). The procedure is as follows: We consider in a 
(t = c o n s t )  slice of our stationary space-time a (p = c o n s t )  surface which can 
be described by r = rs(/;), ~o arbitrary. The metric on this two-dimensional 
axially symmetr ic  surface, which is induced by the four-dimensional metric 
(3) is (all quantities taken with r = rs(8)) 

ds 2 = e z = - 2 U ( v w )  2 [(v;2(O) +r~(O)] d82 + ( e - 2 U w  2 - e2U A 2) d~o 2 . (24) 

Comparing this with the metric of an axially symmetr ic  2-surface in Eu- 
clidean 3-space, described by p = p~(8), z = z~(O), ~o arbitrary, namely 

,~-(o1] ~ ~ 2  = [p~(0)  + z~ ~e 2 + p~(e) d~  ~ , (25) 

yields 

1 

.°CO) = ( e - ~ W ~  - e ~ A  ~) ~ (20a) 
I 

z'Ce) = - ( e ~ - 2 ~ C V W ) ~  [ ( m ( 0 )  + T.~(e)] + aT(e) )  ~ • (26b) 

To integrate (26b) in the interval 0 < 0 < vr/2 one uses the boundary  
condition z~(v/2) = 0. In such a way the embedding functions pc(8), z~(8) 
are obtained. Typical embedding diagrams are presented in Figs. 8-13. 



12 

E 
.=_ 
N 

i | ! i i i i | 

I I I I I I 

0 2 4 6 8 10 12 14 16 

10 

8 

335 

p in km 

Fig.  8. Embedding diagrams of the surfaces of the stars of Table 1. The equatorial 
radius increases with angular frequency. 
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Fig.  9. Embedding diagrams of some internal constant-density surfaces of the 
fastest star of Fig. 8 3 which rotates just at the mass shedding limit. The outermost 
curve represents the surface of the star itself, while the other ones belong to the 
density values 10 r, 10 9, 101°, 10 ax , 10 x2, 10 xz, 10 x4 g/cm 3. 
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Fig.  10. Embedding diagrams of the surfaces of the stars of Table 2. 
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Fig.  11. Embedding diagrams of some internal constant-density surfaces of the 
fastest star of Fig. 10. The innermost surface belongs to the density 1015 g/cm 3, 
the other ones are the same as in Fig. 9. 
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Fig .  12. Embedding diagrams of the surfaces of the stars of Table 3. 
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Fig .  13. Embedding diagrams of some internal constant-density surfaces of the 
fastest star  of Fig. 12. The density values are the same as in Fig. 11. 
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Figure 8 shows the surfaces of the solutions of Table 1, i.e. relatively light 
neutron star models. Additionally, in Fig. 9 the internal structure of the 
fastest star is depicted by surfaces of constant density. It can be recognized 
that  the mass shedding at the equator begins with a bump there caused by 
the outermost layers only. Analogous pictures are shown in Figs. 10 and 11 
for the series of Table 2 (mass M ~ 1.4Mo) and in Figs. 12 and 13 for the 
models of Table 3 (highest masses). The behaviour is qualitatively similar, 
apart from the feature that  the density gradient becomes steeper for higher 
masses. This is of course a general feature of neutron star structure (see 
Fig. 1) and has nothing to do with rapid rotation. 

As second visualization method of the space-time structure of rapidly 
rotating neutron stars we show some pictures of "how a rotating neutron 
star does look like". The idea is to assume that  from the surface of the 
considered neutron star photons are emitted which are moving through 
the curved space-time and eventually reach the observer which is located 
far away (near infinity, in the asymptotically flat region). Obviously, this 
visualization method may be considered to be complementary to the em- 
bedding pictures of the interior of the star, as the photons propagate in 
the region outside the star. Practically, we use a ray-tracing approach: from 
the observer's position the paths of photons are followed back in different 
directions by integrating the null geodesic equations, using the Christoffel 
symbols of the numerically determined metric (3), until each photon does 
(or does not) hit the surface of the rotating star. We call this procedure 4D 
ray-tracing, since apart from three-dimensional space also the time plays a 
role (the time when a photon hits the star determines the position on the 
surface). 

In Figs. 14 and 15 two examples are presented. Both are models from 
Table 3 with V0 -- -0.4455; the first is a relatively slow neutron with an- 
gular velocity ~ ~ 0.63 104 s -z (corresponding Kepler frequency ~x 
1.94 104 s-Z), the second is the fastest one with ~ ~ 1.15 104 s -z (near 

the mass shedding limit: ~K ~ 1.19 104 s-Z). For the sake of visibility the 
surface of the star is painted in a checkerboard pattern (with 30 ° by 30 ° 
patches in the angles 0 and ~o). 

Note that these arc riot two pictures of the same star with different ro- 
tation rates: the number of baryons differs; one star has M0 = 1.86J~®, the 
other M0 = 1.96M®. For this reason also the optical images have differ- 
ent sizes; the heavier one (M = 1.71M®) appears bigger than the lighter 
one (M = 1.59M+) due to the different light deflection. Relativistic light 
deflection is also responsible for the fact that one can see both poles si- 
multaneously and more than the front hemisphere in equatorial regions (for 
non-rotating stars, see also NoUert et al. 1989). The effects of rotation are 
only weakly visible in Fig. 14 (a slight bending of meridional lines), while in 
Fig. 15 the asymmetric appearance is more spectacular. A closer inspection 
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Fig. 14. 4D ray-tracing picture of a slowly rotating neutron star 

Fig. 15. 4D ray-tracing picture of a fast rotating neutron star near the mass 
shedding limit 

shows that  in this picture time-of-flight effects and Lense-Thirring frame 
dragging of photon paths  appear in combination. 
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ABSTRACT 

We have performed an experiment to test the 1/r 2 dependence of Newton's law of  gravitation and to 

determine the gravitational constant G, using a novel experimental method. The two mirrors of a Fabry- 

Perot microwave resonator are suspended as a pair of pendula. The gravitational force of a laboratory test 

mass alternating between two positions acts on this resonator and changes the distance between the two 

mirrors. The resulting frequency change is used to determine the gravitational force. The test mass is 

moved periodically from a reference position to a distance r of  the resonator. Analysis of the resulting 

periodicity in the frequency change allows a strong suppression of the random noise and thermal drift 

phenomena. This article describes the experimental method and discusses the results of ftrst measurements 

in the range of distances of about 0.6 m to 3.6 m between the Fabry-Perot resonator and the test mass. In a 

series of experiments we have investigated the inverse square law and determined the gravitational constant 

with a relative error of 1.5.10-3. No deviations from Newton's 1/r 2 law or the CODATA value of G were 

found. 

1. INTRODUCTION 

Many aspects of Newton's law of gravitation have been investigated experimentally during the three 

centuries which passed after its formulation and the precision of these experiments has increased 

continuously [1-4]. Until today the most precise determination of the gravitational constant G is possible by 

means of the famous Cavendish torsion balance. It has been highly developed in the last century and G can 

now be determined with a relative precision of 1-10-4 [5]. It is however remarkable, that none of the 

experiments which have been performed to obtain a precision value for G have at the same time tested the 

inverse square law. 

Looking at the existing experiments performed to determine G and/or to investigate the inverse square 

law one observes a few classes of experimental methods characterized by the distance between the 

interacting masses. This distance is called in the following the "range" of the experiment. 

Only a few experiments in the range of a few millimeter up to 10 m have been performed to test the 

inverse square law [1,6-10]. These experiments which used torsion balances or other types of detectors 

achieved a relative accuracy in the determination of the gravitational forces of typically a few percent but did 

not result in values for the gravitational constant. 

Many astronomical experiments for distances of the interacting masses of 107 to 10ll m have been 

performed [1-3,12]. The motion of natural satellites like planets, asteroids and binary pulsars as well as 

artificial satellites like LAGEOS have been studied. There trajectories were investigated carefully and these 
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studies resulted in an excellent confirmation of Newton's inverse square law. However, no value for the 

gravitational constant can be deduced from the motions of celestial bodies. 

In the intermediate geophysical range of distances between 102 m and 104 m other types of experiments 

have been performed. In some experiments the local gravity gradient of the earth was measured using a 

gravimeter whose distance from the center of gravity of the earth was changed. These experiments were 

performed by moving appropriate gravimeters inside of mines, in the Greenland ice, in the earths 

aanosphere and in the ocean. The latter experiments were performed from a tower or a submarine as a work 

station [1-4,13-16]. In other experiments the gravitational force produced by a mountain or the changing 

content of a storage lake was studied. In many of these geophysical experiments deviations have been 

observed which were later identified as systematic errors [13-16]. In general geophysical experiments have 

achieved a high level of precision in the determination of the gravitational constant (up to 0.2 %) and have 

also tested the inverse square law. 

During the last two decades, theories to unify the four fundamental forces in nature have been 

developed. Some of these models propose short-range forces that depend on the composition of the 

interacting matter [2,4,17-21] in contradiction to Einstein's principle of the equivalence of the gravitational 

and the inertial mass, which can be tested in experiments using torsion balances. The most famous of these 

experiments was performed by R. v. E&vt~s in 1907. Until today no deviation from Einsteins principle has 

been found on a relative difference level of 10 -12 [1-3,11], 

Since 1986 Newton's gravitational law has been tested in a series of new experiments with different 

levels of precision [4]. These experiments were stimulated by reports of the observation of possible short- 

range deviations from Newton's gravitational law. This force (known as "fifth force") is assumed to 

depend on the Baryon- or Lepton number of the interacting matter and contradicts Einstein's weak 

equivalence principle. Many of the new experiments have a high sensitivity to detect such a material 

dependent force but have revealed no evidence for such an effect [1,4]. 

The fifth-force discussion has nevertheless motivated us to develop a pendulum gravimeter using a 

Fabry-Perot resonator [22,23]. The gravimeter was designed to measure the gravitational acceleration of a 

test mass as a function of distance and from this to determine the gravitational constant G. A possible short- 

range force can be investigated without assuming an explicit dependence on the material in use. Systematic 

influences will in general result in deviations from the inverse square law. Their dependence on the distance 

of the interacting masses is a useful information to identify and to eliminate the source of these effects. The 

very sensitive check of systematic influences allows to enhance the precision of the measurement of the 

gravitational force and of the determination of the gravitational constant. 

The main objective of this article is to introduce our experimental method and to present the fast results. 

In section 2 the basic principle of the Fabry-Perot gravimeter is explained. In section 3 the gravimeter and 

its main part, the microwave Fabry-Perot resonator, is described in detail. The procedure used to obtain a 

high precision measurement of the resonators resonant frequency is explained in section 4 and the 

experimental results concerning the stability of the resonant frequency of the Fabry-Perot resonator are 

presented. The presently dominating systematic effects due to external forces are outlined in section 4. In 

section 5 we describe the modulation technique applied to measure the gravitational force. Section 6 gives 

the results for the gravitational force as a function of distance in the range of 0.6 m to 3.6 m and our present 

result for the gravitational constant. 
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2. THE BASIC PRINCIPLE OF THE EXPERIMENTAL METHOD 

The central part of the gravimeter consists of two Fabry-Perot mirrors suspended as a pair of pendula 

from a suspension platform (Fig. 1). The pendula have a length l of approximately 3 m and the distance 

b between the two mirrors is about 20 cm. The gravitational acceleration of a test mass M displaces both 

pendula of approximately equal masses ml and m2.The pendulum next to the test mass is displaced by a 

larger amount than the other pendulum. The test mass is brought to a distance r to the Fabry-Perot resonator 

and removed from it to a reference position in a periodic motion (r is the distance between the centers of 

gravity of the test mass and the closest mirror). It rests in each position for 15 min, a time which is much 

longer than the time constant of the pendula. The motion of the pendula is damped by eddy current brakes 

and they reach their new equilibrium position in a few seconds. The two Fabry-Perot mirrors form a 

microwave resonator with a resonant frequency f of approximately 20 GHz. The gravitational force from 

the moving test mass results in a change Ab of the distance between the two mirrors of the resonator and 

therefore changes its resonant frequency by &f. A typical value for the change of the mirror separation due 

to the gravitational force is 20 nm. 

V~ 

x~ ~ ~  
at at 

Fig.1 The principle of the Fabry-Perot 

gravimeter. 

The deflection angles of the pendula (typically 10 -8 rad) and the relative change of the separation of the 

mirrors (Abfo of typically 10 -7) are both very small and therefore Af and Ab are proportional as described 

in more detail in section 3.1. Furthermore, the displacement of each mirror can be approximated as a 

horizontal translation proportional to the gravitational acceleration of the test mass. The quasi static change 

in the mirror separation Ab is therefore directly proportional to the difference ~ of the accelerations of the 

two pendula (al and a2) 

At" = dfAbdb = df °~?(aldb - a2) = d~ °~?Aa (1) 
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with ca o being the eigenfrequency of the pendula. The distance to frequency conversion factor of the 

Fabry-Perot resonator df/db is given in section 3.1. Equation (1) shows the relation between the quantities 

of interest, the gravitational acceleration Aa, and the measured frequency shift Af. 

The horizontal gravitational acceleration of each pendulum is calculated by a numerical integration of 

Newton's inverse square law over the mass distributions of the test mass (M) and the resonator (ml, m2): 

mi .gl  = f ~ G . d m i . d M . ~  for i=1,2 (2) 
mtM 

p is the distance between the mass elements. Assuming a symmetric mass distribution and a homogeneous 

density, the 6-fold integral (2) can be transformed to a 3-fold integral, which can be evaluated easily using a 

Ganssian integration formula. 

The combination of equation (I) and (2) results in our basic relation: 

] 
Lrl~ef trRef+D) ] J 

Af is the measured frequency shift of the Fabry-Perot resonator obtained by moving the test mass from a 

position r to a reference position rRef, and vice versa. The terms in the angular brackets correspond to the 

difference of the gravitational accelerations of each pendulum. The function K(r) takes the finite dimensions 

of the masses into account (K = 1 corresponds to point masses or to masses with inf'mite distance). The 

determination of the gravitational constant G from equation (3) requires the knowledge of the sensitivity of 

the Fabry-Perot resonator df/db, the eigenfrequency of the pendula COo, the mass of the test mass M, the 

distancesr, rRcf and b, and the mass distribution function K(r). 

At first sight one might be tempted to suspend only one mirror as a pendulum and to fix the other one. A 

larger shift of the mirror distance created by the gravitational force of the test mass would be obtained. In 

this case.the frequency shift Af due to the gravitational force varies like 1# 2. However, the distance 

between the mirrors would be affected by tidal forces and by disturbing effects like microseismic vibrations 

and other movements and tilts of the ground. Furthermore, a change of the mass distribution in the far 

surroundings of the gravimeter would have a significant influence. 

In order to cancel out these disturbing effects, both mirrors are suspended as pendula of equal length. 

The strong suppression of disturbances is much more important than the decrease of the gravitational effect. 

In this configuration the change in the mirror separation from gravitational forces varies approximately like 

1/r 3 and only the immediate surrounding of the gravimeter has to be controlled. 

3. THE GRAVIMETER 

We have started our experiments to test Newton's law with measurements of the gravitational force of a 

test mass having a distance of about I0 cm between its center of mass and the closest mirror of the Fabry- 

Perot resonator [22,23]. This prototype set-up was used to get an idea of the achievable resolution and 

accuracy and to develop solutions for various foreseen or unforeseen problems. Based on the experience 
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with this pilot experiment an improved experimental set-up was designed. It is used for measuring the 

gravitational force exerted by a test mass in a distance of 0.6 to 3.6 m. 

Fig.2 shows the schematic arrangement of the experimental set-up. Its main part, the two Fabry-Perot 

mirrors suspended as pendula, is placed inside of a vacuum tank. This tank is mounted into a supporting 

steel construction called "the tower". The test mass is positioned on a guide rail outside of the tower and is 

aligned to the same height as the resonator. In the following paragraphs the individual components of this 

set-up are discussed. 
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Fig.2 Schematic arrangement of the experimental set-up. 

3.1 THE FABRY-PEROT MICROWAVE RESONATOR 

The Fabry-Perot resonator (Fig.3) consists of two spherical mirrors separated by a distance b of 241 

mm. The radius of curvature R of the circular mirrors is 580 mm, their diameter is 192 mm and their 

thickness at the center is 9 mm. They are fabricated from OFHC copper and the roughness of their diamond 

machined surfaces is 50 nm. For this combination of mirror separation and radius of curvature stable 

electro-magnetic modes exist in the Fabry-Perot resonator [24, 25]. 
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Fig.3 The Fabry-Perot microwave resonator. 

The Fabry-Perot resonator is operated at microwave frequencies in the range of 20 GHz to 26 GHz. The 

field distribution of the resonant modes can be analytically computed with sufficient accuracy using the so 

called "complex-source-point theory" [26,27]. In first approximation the modes are transverse 

electromagnetic (TEMpmq). The field distribution is a standing wave pattern with q being the number of 

half-wavelengths in axial direction. The number of half-wavelengths in radial and azimuthal direction is 

determined by p and m. In the case of the "fundamental modes" TEMoo q, which are preferred in most 

applications, the field distribution is a Gaussian beam with waist radius Wo = 3 cm and length b. The beam 

axis aligns itself along a line connecting the centers of curvature of both mirrors. Due to the focussing effect 

of concave mirrors the field distribution of a Fabry-Perot resonator is stable, even if one mirror is tilted. 

The resonant frequencies fpmq are determined by the boundary conditions of the electromagnetic fields at 

the mirror surfaces [24-27] and are given by 

fr~ = 2 b ' [ q  + l ' n ' a c ° s ( 1 -  b / R)+ higher °rder terms] (4) 

The transverse order n is given by"n = (2 p + m + 1). This formula is accurate except for terms of the 

order (2~.f.wo/c) -6 which amount to only 1 part in 107 of the frequency. 

The first term in equation (4) gives the resonance frequency of an optical resonator with plane-parallel 

mirrors. In this approximation the distance between the mirrors is a multiple of half a wavelength - usually 

called axial order q. The second term takes into account the mirror curvature and depends on the transverse 

order n of the mode. This term is much smaller than the first one. The terms labelled 'higher order' include 

a correction due to the finite wavelength (calculated by means of the complex-source-point theory) and they 

also include the frequency shift caused by the small holes in the mirrors through which the microwaves are 

coupled into the resonator. 
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We have obtained very good agreement between the computed and the measured frequencies of the 

Fabry-Perot modes with a relative accuracy of 5.10 "6. This justifies the application of  equation (4) to 

convert a measured frequency shift df into a change in distance db: 

+,.,,g,,o,. o,.<,o,, to,.m,] (5) 

This equation can be applied if the Fabry-Perot mirrors move in the direction of the Gaussian beam 

inside the resonator, for example due to the gravitational force of the test mass. Equation (5) now gives the 

distance to frequency conversion factor for the gravimeter which was-introduced in equation (1) in section 

2. A typical value for df/db is about 100 Hz/nm. 

At the beginning of every gravitation experiment b and df/db are determined using the equations (4) and 

(5). We estimate the relative uncertainty in the determination of  the two quantities to be 1.4.10 -5 and 

therefore no special calibration of frequency versus distance is necessary. 

3.2 THE QUALITY FACTOR AND THE FREQUENCY RESOLUTION 

The quality factor Q of a resonator is defined as 2x times the stored energy divided by the energy loss 

per cycle. For small energy losses Q is equal to the ratio of the resonant frequency to the full-width at half 

maximum (FWItM) of the resonance curve. If coupling, diffraction and scattering losses are sufficiently 

small, the Q of an open resonator is limited by reflection losses of the mirrors. In this case Q is independent 

of  the transverse order of a mode excited in the resonator and the sensitivity limit lib in terms of the 

smallest detectable frequency shift lif is at its maximum: 

l ib= lif - ' - -  FWHM "Q 

The sensitivity lib is to a good approximation not explicitly dependent on the resonant frequency and 

proportional to the ratio b/Q [22,23]. A shift of one mirror with respect to the other one by a distance ofb/Q 

results in a frequency shift which is equal to the FWHM of the resonance curve. The experimentally 

obtained Q-value of 210 000 is dominated by reflection losses and the resulting value for b/Q is 

approximately 1 p.m. 

The experimental determination of the resonant frequency and the Q of the Fabry-Perot resonator is 

discussed in detail in section 4. In order to outline the principle a short description is given in the following. 

Waveguides are used to feed the microwave power from a synthesized sweep generator with a stability of 4 

Hz to the resonator. A certain fraction of this power is coupled into the resonator and excites the desired 

mode. The power coupled out of the resonator is transmitted by a waveguide to a microwave detector 

diode, i.e. the Fabry-Perot resonator is operated in transmission. The coupling of the waveguide system to 

the resonator is achieved by means of small coupling holes to avoid a reduction of the Q-value due to 

scattering losses at these disturbances of the mirror surface. These small coupling holes lead to a very weak 

coupling with a typical transmission coefficient of about 10 -4. The sweeping of the generators output 
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frequency and the registration of the signal of the microwave detection diode are performed by computer 

control and the resonance curve of the Fabry-Perot resonator is obtained. From this resonance curve the 

resonance frequency and the FWHM is deduced. Only a single mode is excited in the resonator and all 

other modes are clearly separated in frequency by about thousand times the halfwidth of a resonance. 

The relative frequency resolution ~f/FWHM in equation (6) is a quantity which is specific to the data 

analysis and is determined by the precision with which the shape of the resonance curve is measured. As 

will be shown later a relative resolution of 4.10 -6 is achieved experimentally which then corresponds to a 

precision in the determination of the change of the mirrors distance of ~b = 4.10 "12 m. A Fabry-Perot 

resonator is therefore well suited for measuring small displacements. The resolution is high enough to 

measure the mirror displacement of 12 nm due to the gravitational force of our test mass with a relative 

accuracy of about 4.10 -4 as a function of distance and to determine the gravitational constant with an 

accuracy of about 1.10-4. At this moment it is worthwhile to mention that the absolute Q value of a Fabry- 

Perot resonator can be improved possibly by the use of superconducting mirrors. This would then in turn 

lead to an even higher accuracy in the determination of G. 

3.3 SOME MICROWAVE ASPECTS OF THE FABRY-PEROT RESONATOR 

In order to secure the proper functioning of the Fabry-Perot resonator as a gravimeter it has to be 

decoupled electrically and mechanically from its surrounding as perfectly as possible. The mechanical 

arrangement of the waveguide coupling to the resonator and the electrical coupling of the resonator to the 

surrounding metallic enclosure of the vacuum tank therefore needs special attention. 

The two mirrors are mounted into a cylindrical copper shield in order to minimize the amount of 

microwave radiation leaving or entering the Fabry-Perot resonator (Fig. 3). These cylinders act at the same 

time as a mechanical mount of the mirrors, as a microwave shield and as an eddy-current brake (section 

3.5). The mirrors and their mountings are designed to result in a simple and rotationaUy symmetric mass 

distribution which can be integrated with high precision (equation (2)). 

An additional cylindrical shield is arranged between both mirrors. It reflects or absorbs microwave 

radiation which would otherwise be radiated from the surrounding into the resonator or vice versa. For the 

same reason the edge of the cylinder is coated with microwave absorber. An absorbing ring is mounted into 

the cylinder (Fig. 3) in order to damp selectively spurious higher order modes in the Fabry-Perot resonator. 

(The inner diameter of this ring is large enough to avoid a reduction of the quality factor of the main 

mode). Thus, the "higher order mode" filter (in the following abbreviated as HOM filter) results in a strong 

electromagnetic decoupling between the desired field distribution inside the resonator and undesired fields 

in its surrounding. For the same reason the resonator is surrounded by absorber plates. As will be 

described below the waveguides coupling the Fabry-Perot to the microwave drive and detection system 

couple also to the space surrounding the resonator. Any field exited in this space will therefore form a 

background signal underneath the Lorentzian shaped resonance curve. This background is a priori 

influenced in an unpredictable way by the movements of the two pendula (section 4.3). 

The mechanical behaviour of the pendula would be strongly affected by a physical contact between the 

resonator and the waveguides. Therefore the waveguides have to be mechanically decoupled from the 

resonator. The gap between the waveguide and the back sides of the Fabry-Perot mirrors should be narrow 
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to avoid a strong coupling of the waveguides to the space outside of the Fabry-Perot. To achieve this the 

waveguides are connected to the Fabry-Perot by a choke-junction [28]. Such junctions are generally used to 

couple rotating radar antennas to their drive systems. The waveguides are carefully aligned by an externally 

adjustable positioning system. A continuing waveguide is machined into the back of each mirror and has a 

length of a quarter-wavelength (Fig.3). Due to this arrangement, the electromagnetic field in the gap 

between the waveguide and the back of the mirror is small and so are the radiation and reflection losses. 

Furthermore, the power transmitted through the resonator is nearly independent of the relative position of 

the mirrors and the waveguides and therefore insensitive to vibrations and to tilt. Typical dynamical 

displacements during the experiment are of the order of I I.tm and result in a relative change of transmitted 

power of less than 10 -4 . In addition the determination of the resonant frequency is essentially independent 

of the transmitted power. 

3.4 THE SUSPENSION OF THE FABRY-PEROT MIRRORS 

Both mirrors and the HOM filter are suspended each in two loops of tungsten wire (Fig.4). The diameter 

of the wire is 0.2 mm. Tungsten is chosen because of its beneficial magnetic, elastic and thermal properties. 

The bodies of the pendula (Fig.3) are dimensioned such that the center of mass is located at the mirror 

surface. The center of mass is positioned halfway between the supporting wire loops. Therefore, in first 

approximation, the thermal expansion of the copper due to a change in temperature does not result in an 

change of the effective distance between the two Fabry-Perot mirrors and the resonance frequency is 

insensitive to a drift of the resonators temperature. 

The tungsten wires are mounted to a special suspension platform (Fig. 4) and can be adjusted in order to 

properly align the resonator and the HOM filter. The horizontal separation of the wires (and thus the mirror 

separation) is held constant by means of a quarz plate. The length t measured from this quarz spacer to the 

center of mass of the mirrors is about 2.62 m. Quarz is used because of its small thermal expansion 

coefficient in order to reduce the thermal drift of the resonance frequency of the Fabry-Perot resonator. The 

change in mirror separation due to thermal expansion of the quarz plate is about 60 nm/K and requires a 

good thermal stability of the suspension platform. 

3.5 THE EDDY-CURRENT BRAKE 

The system of the two pendula acts as a mechanical band-pass filter. Ground oscillations with a 

frequency much lower than the eigenfrequency of the pendula (0.308 Hz) move both pendula in the same 

way and the mirror separation b is affected negligible. The transmisSion of high frequency vibrations of the 

ground (for example vibrations caused by industrial activity, by traffic or by machines within our institute) 

is strongly suppressed due to the inertial mass of the pendula. Only ground vibrations in a frequency band 

centered at the resonant frequency of the pendula are transmitted and increased to a level which is 

determined by the damping of the pendula. 

Ground oscillation in this frequency band (around 0.3 Hz) are dominated by microseismic noise which 

originates from waves caused by the surges of the Mediterranean Sea and the Atlantic Ocean [29]. These 
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waves propagate through the whole continent without strong damping. A typical time variation of seismic 

activity during the course of the year is obtained which is correlated with the intensity of cyclones at the 

ocean. The intensity of microseismic vibrations varies only weakly between different locations. 

To damp the pendulum oscillations excited by microseismic noise we use eddy-current brakes (Fig.4). 

steel platform I tank 
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1 
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Fig.4 The suspension of the pendula and the eddy-current brakes. 
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The brakes ensure a damping of the oscillations of the pendula without mechanical contact and the damping 

force is strictly proportional to the velocity of the pendula. The eddy-current brakes consist of iron plates 

supporting an array of permanent magnets with alternating polarization (chess-board pattern). They are 

arranged around the cylindrical enclosures of the two mirrors and ensure a strong damping. The time 

constant of the damping is about 2 s. The pendula move with nearly the same phase and an ampfitude that is 

inversely proportional to the eddy-current damping. One of the arrays with permanent magnets can be 

adjusted in situ in order to synchronize the oscillations of the two pendula and thereby to minimize the 

oscillations of their separation. The differential amplitude is found to be about 1/2000 times the amplitude 

of an individual pendulum. 

3.6 THE VACUUM TANK AND THE TOWER 

The gravimeter is placed inside a vacuum tank (Fig.2). Dielectric effects and convection in the residual 

gas which disturb the resonant frequency of the Fabry-Perot resonator can be avoided if the vacuum 

pressure variations can be kept below 0.01 Pa. To avoid gas pressure forces [23] without going to ultra 

high vacuum the experiment is operated above the threshold of this effect, at a pressure of 2 Pa. Good 

thermal insulation is required to keep thermal expansion effects small. To achieve this we use a vacuum 

tank with an additional vacuum insulation and a superinsulation shield. This vacuum tank which acts as a 

thermostat was in fact used in an earlier experiment as a large cryostat for liquid helium. 

As the test mass is moved horizontally over the laboratory floor the Fabry-Perot resonator has to be 

placed at the same height as the center of the test mass. To achieve this the vacuum tank which encloses the 

gravimeter and which has a weight of 2 t has to be supported in a sturdy steel construction called "the 

tower". The tower is built from strong steel girders to obtain such a rigidity that the lowest eigenfxequencies 

of the mechanical vibrations of the tower are higher than the eigenfrequencies of all gravimeter modes 

which contribute significantly to the vibrations of the mirror separation. This is in fact achieved and no 

coupled or excessively increased oscillations of the pendula are observed. The transmission of high 

frequency oscillations of the tower to the pendula is wellbelow the detection limit. 

The outer surface of the tower is shielded with aluminum plates against thermal radiation. All 

components in the close surroundings of the experiment which produce heat, that is the vacuum pumps, the 

microwave source, the microwave amplifier and the motor drive of the test mass, are installed outside of the 

tower and are additionally cooled or shielded. The only heat generated inside the thermostat originates from 

the microwave losses in the waveguides and in the resonator itself. These losses are low and constant in 

time. 

3.7 THE TEST MASS AND ITS POSITIONING SYSTEM 

The test mass is a cylinder with a diameter of 440 mm and a length of 430 mm (Fig. 5). The mass 

distribution of this body can be easily integrated (equation (2)). Its dimensions were chosen in a way that 

the gravitational force between test mass and resonator is nearly the same as the gravitational force of point 

masses positioned at the centers of gravity (the correction function K(r) which was introduced in equation 

(3) assumes values between 0.98 and 1.0001). The mass is 575.8 kg (Table lb). 
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Because of its very small magnetic susceptibility and its good mechanical properties, we have chosen a 

special brass for the material of the test mass (an alloy of 90% copper and 10% zinc with a magnetic 

susceptibility of 4.10-5). Magnetic forces between the test mass and the resonator could result in a 

systematic error and have to be avoided. The magnetic field at the position of the test mass is only about 

0.05 mT. It is given by the magnetic field of the earth distorted by the steel tower and the guide rails. In 

contrast the magnetic field of the eddy-current brake at the location of the resonator is strong (about 0.3 "13. 

This causes a magnetic force due to the interaction of the induced magnetic dipole moments of test mass and 

resonator. Thus, only materials are allowed to be used with a low diamagnetic or paramagnetic 

susceptibility and a small percentage of ferromagnetic impurities. We have chosen copper for the resonator, 

tungsten for the pendulum wires and brass for the test mass. Because of this choice the magnetic forces 

between the masses were found to be below the detection level. 

The mass of the test mass was determined according to the following procedure: During the fabrication 

of the testmass a part of the material was used to precisely machine small samples to determine the density 

p of the test mass and its uniformity. With the obtained density (p = 8.8066 + 0.0004 + 0.0017) g/cm 3 and 

with the dimensions of the test mass its mass M was found to be (575.80 + 0.03 + 0.11) kg. 

The test mass rests on a special guide rail and glides on rollers which are rotating on ball bearings 

around axels fixed to this rail (Fig.5). The test mass can be positioned precisely by means of a spindle. A 

motor drive rotates the spindle in steps of 50 ~tm. The test mass and the spindle are connected by means of 

a fitting counterpart. Only the small mass of this counterpart has to be added to the mass distribution of the 

test mass (equation (2)). All other movable parts perform a strictly rotational motion. 

The error in the determination of the distance between test mass and resonator becomes non critical if it 

is about 100 ~tm at r = 0.6 m and 2 cm at r = 3.6 m. The actual systematic positioning error is less than 80 

Ixm per meter of covered distance relative to the closest position for (r = rl). This distance of nearest 

approach between the Fabry-Perot resonator and the test mass is determined with a statistical accuracy of 20 

I.tm and with systematical positioning errors of about 100 p.m which are due to the inaccuracy of the 

instruments used for measuring the respective distances. These errors can be reduced by using calibrated 

standards. Each position can be reproduced' within a statistical error of less than 20 ~tm (a summary of the 

positioning errors is compiled in Table 1). 

4. THE MEASUREMENT OF THE RESONANT FREQUENCY 

The measurement of the resonant frequency of the Fabry-Perot resonator as a function of the position of 

the test mass is the basic experimental task. In this context it is very important to ensure that the change in 

frequency which is registered is caused only by the gravitational force of the test mass in its different 

positions relative to the gravimeter. Even if the measurement of the resonance frequency is affected by 

various systematic errors, the measurement of the frequency shift due to the gravitational force of the test 

mass is not influenced as long as these effects are independent of the position of the test mass. 
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Fig.5 Test mass with positioning system. 

4.1 EXPERIMENTAL PROCEDURE 

Experimentally the resonance frequency of the Fabry-Perot resonator is determined as follows [23]. The 

microwave source used in this experiment is a synthesized sweep generator (Hewlett-Packard Model 8340 

B) with a frequency stability of 4 Hz. The microwave power of this oscillator is amplified by means of an 

amplifier with a low noise figure. The level-controlled microwave power of this amplifier (Avantek, AMT 

26136) is then Iransmitted through the Fabry-Perot resonator. A crystal detector transforms the transmitted 

power into a voltage signal which is proportional to the microwave power. To measure the detector signal 

(typical value: 5 mV) with a relative accuracy of about 10 -5 the high frequency noise of the oscillator and of 

the detector are both reduced by a low pass filter. The filtered output signal of the diode is measured by 

means of a digital voltmeter (Hewlett-Packard Model 3457A) which integrates the voltage during one 

power line cycle (20 ms) to further suppress noise. A computer scans in a digital sweep the generators 

frequency across the resonant frequency of the chosen Fabry-Perot mode (for most measurements 

TEM0035). The filtered detector signal is read from the voltmeter and the resonant frequency is calculated 

by a least-squares fit to the Lorentzian-shaped resonance curve (Fig.6). Due to this procedure the measured 
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Fig.6 The detector voltage U which is proportional to the microwav e power transmitted through the 

Fabry-Perot resonator as a function of the drive frequency fGen. 

resonant frequency is independent of the microwave power as long as it does not change with a frequency 

which is close to the scanning frequency (or its harmonics). The digital sweep is repeated in equidistant 

time steps of 450 ms (with a time jitter of 0.15 ms) and results in a time series of resonant frequencies 

which can be further analysed and processed. Fig.7 shows the resonant frequency and its fluctuation as a 

function of thne. 
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Fig.7 Fluctuation of the measured resonant frequency f of the Fabry-Perot resonator as a function of 

time. 
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4.2 FLUCTUATIONS OF THE RESONANT FREQUENCY 

To a fLrst approximation, changes of the resonator frequency can be described as a superposition of 

harmonic oscillations. Fig. 8 gives a typical example of a power density spectrum of the resonant frequency 

of the Fabry-Perot resonator. Oscillations of the distance between the pendula are driven by microseismic 

vibrations of the ground and are most pronounced around the resonant frequency of the pendula (in a 

frequency band from 0.15 Hz to 0.4 Hz). The structure of this resonance can be explained well by a 

convolution of the frequency response function of the pendula and the power spectrum of ground 

oscillations [30]. The torsion and the seesaw mode of the two suspended mirrors am not excited with any 

detectable amplitude. During periods of low microseismic activity, mainly from March to September, 

typical amplitudes of the oscillations of b are 0.5 nm, while during microseismic storms in the other half of 

the year, the amplitude is larger by a factor of 4 to 10 (see also [29]). 
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Fig.8 The power spectrum of the fluctuations of the distance b between the Fabry-Perot mirrors at low 

frequencies (with full eddy-current damping). 

The average frequency 0~o of the two pendula is determined after reducing the eddy current damping 

coefficient by about a factor of 100. Then a pronounced and sharp resonance is observed in the spectrum of 

the pendulum fluctuations (Fig.9). COo is obtained from this measurement as 2x (0.3078006 + 0.0000044) 

Hz. The fact that only one sharp resonance peak is observed indicates that the frequencies of the pendula 

are equal within a relative error of 2-10 -4. 

The noise in the frequency range from 5 mHz up to 0.1 Hz is white and has an amplitude of presently 

about 5 pm/mHz 1/2 (Fig.8). This white noise is caused by electronic noise, detector noise and by 

fluctuations of  the microwave power and of the background signal. To determine the frequency shift 

produced by the test mass in its different positions, the numerical values of the resonant frequency (Fig.7) 

are averaged by a digital low-pass filter with a time constant of 60 s which reduces white noise and 

microseismic oscillations with a frequency above 16 mHz. The filtered data are stored for further analysis. 
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Fig.9 The power spectrum of the fluctuations of the distance between the Fabry-Perot mirrors at low 

frequencies (with reduced damping). 

The remaining microseismic variations of the distance between the mirrors are less than 1 pm and the 

remaining white noise amplitude is 0.1 nm. 

The noise with frequencies below 5 mHz is flicker noise, i.e. the noise amplitude is inverse proportional 

to its frequency (Fig. 10). The lowest flicker noise frequency which appears in a power spectrum is the 

inverse of the duration of the measurement. Some unimportant sources of flicker noise have been 

identified, but until today the dominating source remains unknown. This flicker noise is neither rejected by 

the digital filter nor by the least squares fit. It is the dominating source for the statistical error in the 

measurement of the gravitational force. This noise and the low frequency white noise is shown in Fig.11 as 

a function of time. 

The long-term stability of the resonator is given by the drift rate of the Fabry-Perot frequency. Carrying 

out all provisions of thermal isolation and power control, we achieved a drift rate in the mirror separation 

of 0.2 nm/h to 0.5 nm/h. A period of 1 day and a long-term effect are observed. The drift is constant in 

time within a few hours. The thermal stability is better than 10 mK/h. 

4.3 SYSTEMATIC PHENOMENA INFLUENCING THE RESONANT FREQUENCY OF THE 

FABRY-PEROT RESONATOR 

As described in section 3.3 there exists a weak coupling between the fields in the Fabry-Perot resonator 

as well as the traveling waves in the two waveguides and the very small field exited in the metallic 

surrounding (vacuum tank) of the gravimeter. This results in a background signal at the detector diode and 

a slightly deformed shape of the resonance curve. The influence of this background signal on the resonance 
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Fig.10 The power spectrum of the flicker noise at very low frequencies (after subtracting the white 

noise). 

L.J 0 .02  

0 .01  

0 . 0 0  

- 0  • OJ. 

- 0 . 0 2  

I " " '  " I . . . .  ~ . . . .  ~ . . . .  I . . . .  I . . . .  1 . . . .  i . . . .  I . . . .  I ' 

, , , ,  • , , ,  , . . . . . . . . . . . . . . . . . . . . . .  , . . . .  , 
i i i i i , 

10  ~ i l  20  2S  ' xO  35  40  45  50  

t [m in ]  

Fig.11 Low frequency fluctuations of the filtered time series of the resonant frequency f versus time. 

frequency would be negligible if the ratio of this disturbance to the maximum of the resonance curve would 

be less than 4.10 -6. By means of the choke-junction, the copper shield around the mirrors and the HOM 

fLlter a ratio of background to transmitted signal of about 10 -3 is achieved. This is indeed much higher than 

the required value of 4.10 -6 . The background signal is however nearly constant in time and independent of 

the position o f  the test mass. The measurement of the shift of the resonance frequency in a gravitational 

experiment is influenced only on a level of 2-10 -7 times the FWHM. This corresponds to a relative 

systematic error in the measurement of the gravitational force of about 1.10 -5. 
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Another type of systematic error is due to the aging rate and the noise of the quarz oscillator used to lock 

the microwave source. Again, the measurement of a frequency shift is not affected which has been shown 

experimentally by using arubidium frequency standard. 

The microwave power necessary to measure the frequency shift of the Fabry-Perot can by itself 

influence the resonant frequency. The microwave power dissipated in the waveguides and in the resonator 

is the dominant internal heat source and leads to a thermal drift of the separation b of the two mirrors. 

Another problem arises from the radiation pressure exerted by the field in the resonator onto the two 

mirrors. To avoid both effects the resonator is operated at a power level as low and as constant in time' as 

possible. A tolerable stored energy in the resonator is 1.10 "11 L It results in a shift of the distance b 

between the pendula of 0.7 nm. This stored energy is related to a transmitted power of 2 }.tW which is well 

above the detection limit of 0.01 nW. Dissipation and microwave pressure are nearly constant in time due to 

a control system, which keeps the microwave power constant to a relative accuracy of about 10 -3. The 

fluctuations of the microwave power are therefore estimated to result in a jitter of 1 pm in b. 

The dominant systematic error in the measurement of the gravitational effect due to an external force is a 

flit of the tower. The load of the test mass results in an elastic deformation of the ground and thus in a tilt of 

the tower. The top of the tower is shifted maximally by an amount of 0.22 I.tm, depending on the position 

of the test mass. Even so the tilt sensitivity of the gravimeter is small (about 0.2 nm mirror shift per I.tm 

tilt), a considerable part of 0.04 nm is transferred to the mirror distance. The detailed mechanism of this 

transfer as well as the tilt sensitivity is not yet understood. The results presented in the next chapter have 

been corrected by means of independent measurements of this effect. The inaccuracy of this correction 

corresponds to about 0.008 nm and is added to the error of the modulation amplitude which results in a 

significant contribution to the total error budget (see table 2). Not only for that reason we will try to 

eliminate this effect as soon as possible. 

5. EXPERIMENTAL PROCEDURE FOR MEASURING THE GRAVITATIONAL EFFECT 

The gravitational acceleration between the test mass and the Fabry-Perot resonator is measured by 

moving ~ e  test mass from the position r for which the gravitational acceleration is to be determined to a 

reference position rRcf and vice versa. This procedure is repeated periodically and results in a square wave 

modulation of the resonators frequency [23] (Fig. 12a and 13a). 

A period of 30 minutes is chosen which is much longer than the time needed to move the test mass 

(<__ 50 s) as well as the time constant of the digital low-pass filter (60 s), and again much longer than the 

relaxation time of the pendula (approx. 2 s). The modulation amplitude is proportional to the difference of 

the differential gravitational acceleration of the test mass (equation (3)). The number of periods per position 

and the number of test mass positions is usually chosen to be about 10. In the case of the measurement of 

the small gravitational force in distances larger than 2 m, a higher resolution is desired and 4 test mass 

positions with each 40 periods are more suitable. 

The two extrem positioning examples of the test mass shown in Fig. 12 and 13 are superimposed by a 

slow drift of the Fabry-Perot frequency. This predominantly thermal drift is subtracted from the data prior 

to further analysis, described below. To visualize the result of this analysis the obtained data (Fig.12 and 

13a) are superimposed period by period and averaged. The combined time averaged signals obtained this 

way are shown in Fig.12b and 13b for the two extreme positioning cases. 



359 

:•v t . O  

t . . J  

O ' , t  

0 . 0  

- 0 . 5  

- / . 0  

I. . I . . . .  l 

• e . . . .  i . . . .  I . . . .  l . . . .  I . . . .  t . 

J L 0 0  1 . 5 0  2 0 0  2 5 0  3 0 0  3 5 0  

t rmin l  

Fig.12a Modulation signal Af of the Fabry-Pcrot frequency f produced by the test mass alternating 

between thc position of closest approach r = rl and r = rR,f. 

0 . 5  

0 . 0  

- 0 ° ~  

t . . . .  I . . . .  t . . . .  I . . . .  i . . . .  s . . . .  i . . . .  

7 ~  OO 8 ~  9 0  9 5  £ 0 0  £ 0 5  £ 1 0  

t Cmin] 

Fig. 12b Combined time averaged modulation signal after subtracting the thermal drift of the mirror 

separation. 
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Fig. 13b Combined time averaged modulation signal after subtracting the thermal drift of the mirror 

separation. 

In a more precise analysis the modulation amplitude is determined by a demodulation technique. This 

method is based on the computation of a correlation of the measured time series of Fabry-Perot frequencies 

f(0 with a periodic function y(t) which is a squ~re wave or a sine wave function: 
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T 
CO(0) ) : T 1-- ~f(t) .  y(t). dt 

O 

with y(t) =-v~.  sin(c0t) or y(t) = { +1, if sin(o)t) > 0 
-1,  if sin((ot) < 0 (7a) 

T is the duration of the measurement and co is the frequency of the modulation. The measured time series 

fit) is approximated as a superposition of an ideal signal with an amplitude A and uncorrelated noise and 

drift effects N(t). The modulation amplitude is determined by evaluating the correlation function: 

f ( t ) = A . y ( t ) + N ( t )  with l i m C N y = 0  ---) l i m C f y = A  (Tb) 

T ~ * , ,  T---~** 

The integration in equation (7a) is carried out using an integration routine or a digital low-pass filter. In the 

case of a square wave demodulation function, the integral is reduced to a mean value which can be 

determined numerically or graphically. 

Various other methods are based on the computation of correlation functions. A prominent method is the 

Fourier series which can be carried out by computing Fourier integrals or by means of a narrow digital 

band-pass filter which lets only one Fourier component pass (usually the ftrst component). A l l  these 

numerical methods are mathematically equivalent. They differ only in the achievable resolution, the inherent 

errors and the level where they are affected by systematical errors and nonideal effects. 

The common property of these methods is that statistical errors of the data, low- and high-frequency 

noise and the thermal drift of the mirror distance can be separated, and the change in the pendulum 

separation due to the gravitational acceleration can in principle be determined with high accuracy. The 

achieved accuracy in Ab depends on the duration of the measurement. A typical accuracy is 4 pm, 

corresponding to an integration time of 4 h, and results in a siatistical error of the gravitational constant of 

1.7.10 -4 . The accuracy can be further improved to 1.3 pro, if the integration time is increased to 15 h. This 

is done for the range of distances above 2 m. An even longer integration time seems not to be practical. 

1.3 pm has been the highest accuracy to measure a change in mirror separation achieved so far. It 

corresponds to a statistical error of the gravitational constant of 5.10 "5. This seems to be the fundamental 

limit of a normal conducting Fabry-Perot resonator and determined by its Q value. 

6. RESULTS 

The modulation procedure (Fig.12a and 13a) described above has been repeated with the test mass in 

different positions (but with the same reference position), and the shift of the resonant frequency has been 

measured as a function of distance between resonator and test mass. Then the modulation amplitude Zkf is 

determined and converted into a shift of the separation of the pendula by means of the conversion factor 

df/db of the chosen TEM0035 mode which is calculated using equation (5) and given in Table la. Other 

important parameters which are necessary to determine the gravitational force are listed in table lb. 
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Table 1. List of parameters necessary to determine the gravitational constant together 

with their systematical and statistical errors. 

a) b 
df/db 

b) fDO 

M 

rl 

rRef 

r2 

= ( 0.241 195 + 0.000 003 ) m 

= ( -90.53297 + 0.0012) Hz/nm 

= 2re ( 0.307 800 6 + 0.000 004 4 ) Hz 

= ( 575.80 + 0.03 + 0.11 ) kg 

= ( 0.365 46 + 0.000 02 + 0.000 11 ) m 

= ( 1.850 46 + 0.000 02 + 0.000 23 ) m 

= ( 3.333 76 + 0.000 02 + 0.001) m 

Table 2. Listing of the statistical (a) and systematical (b) errors in the determination of the 

gravitational constant. 

SOURCE OF UNCERTAINTY 

a) 

noise and drift of  mirror distance 

micmseismic noise 

relative test mass position 

electronic noise 

b) 
correction of the tilt effect 

absolute test mass position 

misalignment of the test mass 

mass of the test mass 

mass distribution of the resonator 

mass distribution of the test mass 

numerical data reduction 

microwave background 

misalignment of the resonator 

average frequency of the pendulum 

relative deviation of the pendula frequencies 

conversion factor 

tilt of the Gaussian beam 

magnetic forces 

UNCERTAINTY 

in AG/G / 10 -3 

0 . 1 7  

<0.02 

<0.02 

<0.01 

0.40 

0.18 

0.14 

0.30 

0.22 

0.10 

<0.1 

<0.02 

0.02 

0.014 

<0.2 

0.014 

<0.01 

<0.001 
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Table 2 gives a summary of the important statistical and systematical errors which finally determine the 

accuracy by which G or the l/r 2 dependence can be determined. Most of these errors have already been 

discussed in the proceeding sections and a few are given as estimates without further discussion. 

The theoretical shift of the mirror distance due to the gravitational force is computed from the integration 

of the inverse square law over the mass distribution of test mass and resonator. The value of the 

gravitational constant used for this computation is the CODATA-value Gc= 6.6726"10 "11 N m2kg "2 [5]' 

The distances r between test mass and resonator are measured for convenience from the front side of the 

test mass to the front side of the resonator, as well as the reference position rgef. (The distance of the 

centers of gravity of the test mass and the pendulum next to it is obtained by adding 0.2541 m). rl is the 

distance from the test mass in the front position on the guide rail to the resonator and thus the smallest 

distance for which the gravitational force could be measured. In a first experiment the gravitational force 

has been measured in the range from rl to rRef. In a second experiment the distances have been increased to 

the range from rRef to r2. This experiment was carried out with the guide rail shifted by rRef - rl. The chosen 

set of distances r in both ranges is not given here and can be read from the corresponding figures.The 

values ofrl, r2 and rRef are listed in Table lb). 

6.1 THE GRAVITATIONAL FORCE IN THE RANGE OF 0.6 M TO 3.6 M 

In Fig.14 the values of the measured shift Ab of the mirror distance b for the test mass positioned in the 

range from 0.6 m to 2.1 m are plotted versus the computed values. The data points are normally distributed 

and well on a straight line as expected in the case of an inverse square law. No significant deviations are 

observed. The full line is a least-squares fit to the data using relation (3). The gravitational constant G is 

determined from the slope of this line to be 

G = (6.6613 + 0.0011 + 0.0093) .10 -11 N m 2 kg -2 

and G - G  c = (-1.69 + 0.17 + 1.39)- 10 -3. 
Ge 

The first error is the statistical error as determined from the least-squares fit (Table 2 a) and amounts to 

only 1.7-10 -4. In addition systematical errors of about 1.4.10 -3 have to be taken into account (Tablel and 

Table 2 b ). The systematical error is" the second error quoted. 

The value of the gravitational constant G as determined in this experiment and the CODATA-value Gc 

[5] differ by 1.7.10 -3 . If the total relative error of our experiment (1.6.10 -3 ) is considered, both values 

agree very good. 
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Ng.14 The measured modulation amplitude Abexp of the distance b between the two Fabry-Perot mir- 

rors due to the gravitational force of the test mass in different distances to the resonator versus 

the theoretical values Ab~e~ which were computed from equations (1) and (2) using the 

CODATA value Gc. In this plot a gravitational force following Newtons law is a straight line. 

The slope of this line is our experimental value of G in units of Gc. 

In Fig.15 the measured shift of the mirror separation is plotted versus the distance r. Fig.16 gives the 

deviation from the theoretical values which are based on the measured value of the gravitational constant G. 

The results measured in the range of 2.1 m to 3.6 m are included in Fig. 15 and 16. A more detailed figure 

is inserted to Fig.15. As can be seen from these figures, the measured results agree very well with the 

inverse square law and no significant deviations are observed. 
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Fig.15 The measured modulation amplitude Abexp versus the distance r of the test mass from the Fabry- 

Perot resonator. The full line corresponds to Newton's 1It 2 law. 
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Fig.16 The relative difference between the experimental results and the computed values using the gravi- 

tational constant G as determined in this experiment. 

Possible deviations from the inverse square law can be described using a modified law of the following 

form: 

F ( r ) = ~ O M m r 8  ~ ~2.(1-8.1n(r/ro)+... ) for 8<<1 (8) 

The gravitational force is assumed to decrease with a power (2+8) of the distance of the interacting 

masses. In Newton's gravitational law the parameter 5 equals zero. The parameter ro has an absulute 

value of 1 and is introduced only to keep the conventional units of the gravitational constant. 

This modified gravitational force was integrated over the mass distribution of test mass and resonator, 

and the shift of the mirror distance Ab was calculated as a function of distance. The parameter 8 was then 

determined from a least squares fit to be 

8 = (2.1 + 1.8).10 -3 

The quoted error includes both statistical and systematical errors. The measured value of 8 is consistent 

with zero, that is the gravitational force measured in this experiment agrees well with the inverse square 

law. 
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7. SUMMARY 

We have tested a new method to experimentally determine the gravitational force produced by a test mass 

in a range of distances between 0.6 m and 3.6 m from its center of mass. The two mirrors of a Fabry-Perot 

microwave resonator are suspended as a pair of pendula and form the gravimeter. The gravitational force of 

a laboratory test mass exerted on this resonator changes the distance between the two mirrors. The resulting 

frequency change is used to test the gravitational law. The test mass is brought to a distance r of the 

gravimeter and removed from it into a reference position by a periodic motion. The analysis of the resulting 

periodicity in the change of the resonant frequency allows a strong suppression of  the influence of the 

random noise and and thermal drift phenomena. The change in separation of the two minors by the action 

of the gravitational force was measured as a function of distance with an absolute accuracy of 5.10-12 m. 

The relative deviations of the experimental data from the predictions obtained using Newton's inverse 

square law were between about 1.10-3 and 3.10 -2 and well within the estimated errors of our experiment. 

The gravitational constant was determined with a relative accuracy of 1.5-10-3 and its value is consistent 

with the CODATA result. 

The presently achieved precision is not inherent to the chosen experimental method. The ultimate 

sensitivity of the gravimetcr, which is dctermincd by the finite Q of the Fabry-Perot resonator, limits the 

relative precision by which G can be determined to 5.10-5. Our present uncertainty is limited by systematic 

errors which we intend to reduce in our future work. The obtained sensitivity however is large enough to 

increase the distances between test mass and gravimeter into the 5 m range. The inherent limitation of the 

method can be most likely overcome by replacing the copper mirrors of the Fabry-Perot resonator by 

superconducting ones. We have demonstrated in an earlier experiment, that at a temperature of 4.2 K a Q 

value of 1.8,107 can be obtained with niobium mirrors [22]., Recent results of the microwave surface 

resistance of the high Tc superconductor YBa2Cu307 at about 20 GHz [3 I] seem to open the possibility to 

use high Tc mirrors in the gravimeter for an improved sensitivity already at 77 K. 
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Abs t r ac t  

More recently, a number of interferometric experiments with electrons, neutrons, 
and atoms have been performed in the gravit~ttional field of the earth and in non- 
inertial frames of reference. In atolnie interferometry, additional high-precision exper- 
iments are expected to be done in the near future. The results obtained with electrons, 
neutrons, and atoms, respectively, can be understood by means of the SchrSdinger 
or, in the polarized case, by means of the Pauli equation, both of which are coupled 
to the external gravito-inertial field. Based on the characteristic features read off 
from these experiments, one can set up a constructive axiomatic approach for estab- 
lishing a~l appropriate spacetimc geometry and can, independently, develop a gauge 
theoretical forlnalism for gravity. Both constructions make the Riemann-Cartan ge- 
ometry of spacetime lnanifcst. This geometx'y carries t o r s i o n  as well as cur~vature. 

The Riemannian geometry of Einstein's gravitational theory can be recovered as a 
limiting case for the motion of classical point particles and light rays. We put the 
Dirac equation, formulated in a non-inertial frame of reference, into an arbitrary 
gravitational field represented by the spacetilne geometry obtained. We compute the 
consequences for interfcromctric experiments ~md provide thereby a theoretical basis 
for future experiments. 

*) Supported by the Deutsche Forschungsgemeinschaft and the Comniission of the 
European Connnunity, DG XII. 

o) Supported by tile German-Israeli Foundation for Scientific Research and Develop- 
ment (GIF), Jerusalem and Munich. 
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1. I n t r o d u c t i o n  

In these lectures we want to illustrate and to support  the following thesis: Quan- 

tum objects are fundanlentM fbr thc cstablishmcnt of the s t ructure  of spacetime and 
thereby, also, for the theory of gravity. 

To do so, we start  our reasoning by drawing attention to the experimental  foun- 
dations of the interaction betwecn quantum objects and gravity. Today, mat te r  wave 
interferometry with electrons, neutrons, and atoms provides an ever increasing num- 
ber of experiments in which the influence of gravity and inertia on quantum objects 
can be studied in a very direct and precise way. A simple description of these funda- 
mental  experiments 1hakes use of the Pauli equation in a honmgeneous gravitational 
field and in a non-inertial frame of referencc. There  is presently still a big gap between 
this experimental  level on the one hand sidc and the theoretical level at which gravity 

is quantized on the  other hand side. But if one restricts oneself to classical gravity, 
it is possible to read off froln the experimental results some characteristic traits on 
which a theory of the s tructure of classical spacetime can be founded. 

Mat ter  wave interfcrometry convincingly demonstrates the importance of gravity 
and inertia in the quantum dolnaln. Accordingly, wc need a corresponding theory 
which, however, presupposes a framework for the spacetime structure in the quantum 
domain. How can it be established? Wc know from the corresponding situation 
in cl~sical physics that  it would be unsatisfactory to put the postulate 'Spacetime 
obeys a Riemannian geometry '  ~t the outset of a theory of si)acctirne. What  we rather  
need is a physically conch lsivc reasoning which will eventually lead to a s ta tement  
of this type. For classical physics, there have been many efforts to establish such 
a s ta tement  as a result of basic postulates related to the equiwdence principle for 

classical mat te r  fields or, in the constructive axiomatic approach, to the behavior 
of point particles and light rays. In experiments point particles and light rays are 
typically realized by satellites and radar signals and, conversely, they characterize the 
dolnain of application of this approach. It is evident that,  ibr instance, the interior 
of the hydrogen atom including its nucleus cannot be explored in this way. On the 
other hand, to refcr for the quantum domain once more to the postulate cited above, 
would be ~ unsatisfactory ~s it has already been in the classical domain. Instead, we 

have to take into account quantum mech~Lnical experience right from the beginning. 
This is what we ~tre going to do. 

A further reason for this procedure is the following: There  is a hierarchy within 
the theories of matter .  Quantum physics is more fundamental  than classical physics. 
The lat ter  is contained in the former as a limiting case. Matter,  classically described, 
such as satellites, stones, and other candidates for point particles, is composed of 
quarks, leptons,  and thcir gauge bosons. Thc gr~vitational and inertial behavior of 
the complex objects should be a consequence of the behavior of the more elementary 
objects. It is therefore reasonable, if not compelling, to relate a theory of the s t ructure  
of spacetilne to the more fundamental  theoretical framework of quantum mechanics, 
which means, by the same token, to b~sc it on thc more primitive objects, namely 
on the elementary particles. And ~,his even morc so, because the influence of gravity 
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on classically described matter can be derived, as a limiting case, fi'om the more 
fundamental quantum approach. 

This is not to be confl~scd with the fact that qual~tum mechanical experiments 
are performed using classical measuring devices. For a quantum based constructive 
axiomatics, for example, only empirical facts will be used which can be read off in a 
geometry-free way. 

Finally we mention still anothcr reason for relying on quantum objects as prim- 
itive objects when exploring the structure of space-time: quantum objects, as com- 
pared to classical point particles and light rays, ~re the deeper searching probes. The 
interference experiments demonstrate that massive fields with spin couple to gravito- 
inertial fields in accordance with the strong equiwfience principle. The experimental 
results depend on the parametcrs mass and spin. Based on this richer structure of 
the primitive objects, additional physical structures can be geometrized yielding more 
specific statements on spacetime geometry. For example, the torsion of spacetime can 
be "sensed" if spacetime is explored by particles carrying spin. This makes it im- 
plausible to restrict gravitational theory to the torsiou-fl'ee Einstein theory froln the 
outset without giving a physical justification for this restriction of vanishing torsion. 
Only after having established a theory of spacetinn; with torsion, one c~Ln try to look 
for experiments which may show that torsion is negligibly small in certain domains. 

Guided by these heuristic considerations and founded on an empirical basis, the 
following two different procedures for est~d)lishing the geometrical structure of space- 
time seem to be natural: (i) The gauge approach to gravity which represents the 
generic gravitational theory for quantum mechanical matter fields and which incor- 
porates the equivalence principle in an essential way. Following Einstein, the structure 
and form of the gravitational potentials are read off in fiat spacetime from the iner- 
tial forces arising in non-inertial fralues. Following Cartan (1986), in a second step, 
arbitrary non-inertial rcfcreucc fralnes are identified with a field of orthonormal (an- 
holonomic) tetrads. (ii) The constructive axiomatics, as an alternative approach, does 
not refer to special relativity. Instead, nearly ~tll elements of spacetime geometry are 
built up by reformulating as postulates experience largely g~fined fl'om matter wave in- 
terferometry. Both approaches indepcudently result in a R i e m a n n - C a r t a n  spacetime, 
carrying torsion as well as c'a'l~t~atuT"c, thus validating the thesis statcd above. 

The article is organized as follows: As experimental background, in Sect.2, matter 
wave interferolnetry is described with rcfcrence to the Pauli equation which is coupled 
to an external Newtoni~n gr~vitatiomd field. In Sect.3, the fundamental physical 
consequences are poiutcd out. Based on this, in Scot.4, the constructive axiomatic 
approach and, in Sect.5, the gauge approach are conciscly presented. Finally, in 
Sect.6, starting from the spacctime structure established, an approximation scheme 
is given for the description of interference experiments in gravitational and inertial 
fields. It can be used when searching for new measurable effects. 

Acknowledgments :  We are gratefld to the W.&E.Heraeus-Stiftung and to Dr. Gerhard 
Sch/ifer for the invitation to present lectures at the Bad Honnef School on Gravitation. 
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2. Experimental  background 

2.1. Interferometers 

In ter fcrometry  belongs to the flmdanmntal  experiments  in physics. By means of 

interferometry one can s tudy the s t ructure  of the interferring light and ma t t e r  waves 

as well ms the type of interact, ions of these waves with externM ficlds. 

In ter ferometry  of light waves has been known for quite some time. I t  can be 

described by means of the eikomd approximation of the Maxwell equations. Interfer- 
omet ry  of ma t t e r  waw'.s can be understood only if one takes into account the quan tum 

theory of ma t t e r  (~t lea.st within a certain approximation).  Therefore ma t t e r  wave 

interferometry provides a tool for testing some principles of quan tum theory as well 

the influence of external fichls on quantum mat ter .  

Up to now there are three types of ma t t e r  waves at our disposM (1) for which 

interference had been observed and which can bc used to s tudy the interaction with 

externM felds.  These arc electrons, neutrons, and atoms. The  corresponding inter- 

ferometers  arc mostly of the Ma('h-Z¢.'hnder type, that  is, there are spatially sepa- 
rated ma t t e r  beams a.s, for inst~mcc, in the Boas t  and Har t  (1965) perfect crystal  

interferometer.  Other  tyl)cs of intcrfl:rometric setups are also possible, such as the 

atomic fountain setup of Kasevich and Chu (1991). Furthcrlnore, by means of exciting 

t r apped  atoms,  one can do interferolnctry of a toms which remain at the same place. 

Electrons and neutrons are most  conveniently described by means of the Pauli 

or the Dirac equation. Atolns are, of course, more complex objects and should be 

described in an 'n-l)articlc al)I)roach. In some approximation,  this yields a Pauli- 

type  equation with magnetic and electric dipole moments  or its respective relativistic 

version. This represents a ccnt, er-of-mass moti¢m with additional degrees of freedom. 
In the following we will restrict the external forces to gravitat ional and inertial forces, 

that  is, we s tudy the influence of the spacct imc geometry on quantum mat ter .  

Elect~vns arc the first ma t t e r  waves proper intcrfcrometry has been clone with. 
Today charged particle intcrferometry is still 1)ascd on elcctrons. 

The  advantages of 'nc'ut'~v',. inte'rfc'lvmet'ry consist in the simplicity and the nlacro- 
scopic dimensions of the int( 'rfcrometer. The  colnl)aratively large separat ion of the 

neutron beams I)rovidc a device to s tudy quantum mechanics in macroscopic dimen- 
sions. 

(1) As the earliest ma t t e r  wave ' interferomcter  ~, sensitive to an externM gravitationM 

field~ one may consider the K°I(°-lneson systein as described by Good (1961). 
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Figure 1. a) The triple biprism intcrfcromctcr, b) the electron optictfl set up, c) the 
path of the electron be~ms [takeu from H~ssell)a(;h and Nicklaus (1988)]. 

In comparison to neutron interferometry, atomic beam interfeTwnetT~g provides 

several advantages: (i) By means of laser cooling and tr~pping, ~tomic beams can 
be prepared with very low velocites, (ii) ~ttoms h~tve a larger mass and hence smaller 

deBroglie wavelengths [this together with (i) yields for ~ large class of interference 

expel~iments an increased accuracy], (iii) there are much more possibilitites to ma- 

nipulate atomic beams because of their internM degrees of freedom, (iv) sources of 

atomic beams are much easier to handle, and (v) bec~tuse of the internal degrees of 
freedom there are additional effects which may possibly be tested with atom beam 

interferometry based on new types of interfcrometer experiments. However, because 

of the low velocities of the ~ttoms, the experiments are not well suited for testing 

relativistic effects. 

2.1.1.  E l e c t r o n  

Interference of electrons has first been observed by Marton et al. (1953) by 
using crystal plates as beam splitters where the electrons undergo Bragg scattering. 

An effective type of electron interfcrometer was built by MSllcnstedt and co-workers 

(1954, 1961) using a triple biprism (see Fig.l). They  achieved a beam splitting of 
about 100 #m and a path length of about 10 cm. The electrons had an energy of 1 

keV and hence a velocity of ~bout v ~ 0.06 c, where c is the velocity of light. 

Also a double-slit interf'erometer for electrons has been built by MSllenstedt and 
JSnsson (1959). 
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F i g u r e  2. T h e  single crystM in tc r fe romctcr  for neu t rons  of Bonse  and  Har t  (1965). 
T h e  incoming  neu t ron  b e a m  is spi t  ~t the  first slab. T h e  second s lab serves  ms mi r ro r  
and  a t  the  th i rd  sh~b the  b e a m  is recombined .  T h e  ixltensity of  the  in terfer ing b e a m s  
can  be  read  off f rom the  coun te r s  D1 and  D2. {9 is the  Bragg  angle.  D3 is a reference 
counte r .  

2.1 .2 .  N e u t r o n  

The neutron intert 'erometer designed by Rauch, Treirner, and Bonse (1974) is, 
because of its conceptual simplicity, a very successful interfcrolneter for quantum 

mat te r  waves. It demonstrates the wave asi)ect of mat te r  on macroscopic scales. 

The interferolneter consists of a silicon single crystal (see Fig.2). Three  slabs 
are cut from the crystM. The first two slabs serve ,'us beam splitter and mirror, 
respectively, whereas the l,~st one recombines the two beams such that  the information 
related to the interferencc is coded onto the beams leaving the third slab of the 

interferolneter. By means of this set-up, one does not observe any interference pat tern  
directly as, for instance, in the case of a double slit experiumnt with light where the 
interference fi'inges are disl)l~ye(1 on some screen. Instead, this neutron interferometer 
set-up is designed for observing phase shifts induced by varying external parameters,  
like the orientation in the gravitational field or the strength of some magnetic field 
influencing one of the neutron bealns. 

Neutron waves entering the crystal undergo Bragg scattering at the atomic planes. 
Within the crystal the neutron bcalns propagate 1)erpendicular to the crystal face. 
When leaving the crystal they split into a forward and a backward bealn. (2) The  
height and the length of thc interfcrometer are of the order of 10 cm. This means that  

(2) Actually, the propagation within the crystal is more complicated because there 
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one can do quan tum lneehanics on a macroscopic scale. The  ma t t e r  waves used are 
thermal  neutrons with a wavelength of al)out 0.1 tl,'m,, which is equivalent to ~ velocity 
of about  2000 m / s .  The cohcrelmc length of such a neutron is about  30 #m,  whereas 
the extension of the wave packet is of the order of I cm. 

A double slit set-up for neutron interfcromctry has been built by Klein et al. 
(1981) to confirm the Fizeau effect for neutrons. 

2.1.3.  A t o m  

Today there are five types of atomic beam interfel:ometers working around the 

world. 

(i) The  first one, based on a double slit as mechanical beam splitter,  was build by 

Carnal and Mlynek {1991) [see also Carnal (1992)]. The  slit width is 1 # m  and 

the two slits are 8 # m  apart .  The  length of the pa th  is about  1 m (see Figs.3 and 

4). Helium atoms are used with a velocity of 500 m / s .  

N EE 

He I 
I 

/ 

A B O 
SEM ~ 2 

2 

L • L, 

im 

Figure 3. Schematic representation of the ,xtomic beam interferometer of Carnal and 
Mlynek (1991). N: nozzle system and gas reservoir; EE electron impact excitation; A: 
entrance slit; B: double slit; C: detector screen; SEM: secondary electron multiplier. 
d = 8 / ~ r n . ,  L =  L ~ = 6 4  c ' m . , s  I = 2 p.'m.,.s 2 = 1 l~'m.. 

(ii) Kei th et al. (1991) took a grating ~ mechanical beam split ter with zLbont the 

same geometric dimensions as the double slit. 

(iii) Riehle et al. (1991) used a totally different device as beam splitter: As pointed 
out by Bord(} (1989), one can use flmr travelling lascr waves for t rausmit t ing to 

are two slightly different propagation directions which, by interference, yield the so:  
called 'pendellSsung'.  Hence four be~mls leave one slab leading to eight possible paths 
within the interferonmter, which all interfere ~t the last slab. Since the phase shifts 
as, for example,  those induced by gravito-incrtial effects, depeud on the geometry  of 
the paths,  it influences the interpretat ion of the measuring data.  This  problem is still 

under investigation, see Horne (1986) and Werner and Kaiser (1990). 
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Figure  4. Experimental setup of the CaruM-Mlynek (1991) interferometer. EC: 
expansion chamber (N nozzle system, SK skimmer orifice); EI: electron impact exci- 
tation area; CH chopper (velocity selector}; EX: experimental chamber (insertion of 
double slit, etc.); SEM: secondary electron multiplier. 

the a toms  well defined momen ta .  By resonant  absorp t ion  and  emission processes, 

energy and  m o m e n t u m  is exchanged between a toms and  pho tons  (see Fig.5). A 

wave p~ckct with m o m e n t u m  p and  in te rna l  s ta te  la > is pu t  at  the sp l i t te r  1 

into a superpos i t ion  of s ta tes  l a, P0 > ~uld I b, p - t -Ap > by the m o m e n t u m  t ransfer  

b,m b > 

I O,mo > 
J 

j J J  

~ / "  la.O> / / "  
J 
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} n 
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Figure  5. Beam split- 
ting of an atomic beam 
by means of optical 
I~msey excitation us- 
ing four travelling laser 
fields. In the first (left) 
interaction zone the 
atomic matter wave is 
coherently split. The 
second and third inter- 
action zones act as mir- 
rors. In the last zone 
the beams recombine 
and interfere with one 
another [Bord~ (1989)]. 
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Ap = hk from the laser wave. After similar l ~ e r  induced transitions Ib, p + 
Ap > , la, p > and ]a,p > , Ib, p -  Ap > in points 2 and 3, the two 
atomic waves interfere at point 4 after interaction with a fourth laser beam. 
(A second possiblity is represented by /,he dashed lines in Fig.5. This optical 
beam splitter allows coherent separation and recombination of atomic beams. 
In the realisation of Riehle et al., Calcium atoms are used with a velocity of 
about  700 m / s  and a momentum transfer of about 2 x 10 -2s kg m / s  correspond- 

ing to a deflection angle of 22 #tad.  
Note that, because of the small beam separation it is not possible to put  anything 

between the paths. However, because the position of the atom for the transitions 
between the internal states is not relevant, this configuration provides a high 

atomic beam flux. 
The same type of interferometer, but, using Magnesium atoms, has recently been 
built by Er tmer  (1991). 

(iv) Kasevich and Chu (1991) used Ra- 
man transitions of Sodium atoms 
to transmit  a well defined momen- 

tum from the laser light to the 

atoms. They  used laser cooled 

atoms with a tempera ture  of 30 
#K, which is equiwfient to a veloci- 
ty of 18 crn/s. They  have done this 
for two configurations: the Mach- 
Zehnder and the atomic fountain 
configuration. W h e r e ~  in the 
Mach-Zehnder configuration the 
atom beams are spatially separa- 
ted, the atoms move in one direc- 

tion only in the fountain config- 

uration (see Fig.6). They  absorb 
and emit momenta  from the laser 
light in the direction of motion in 
such a way that,  before rccolnbi- 

nation, half of the atoms in the 
beam is travelling faster than the 
other hMf. 
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F i g u r e  6. Space-time diagram of an 
~tomic beam interferometer using an 
atomic fountMn. Solid lines: state 
II,p>. Dashed lines: state [2,pq-Ap>. 

(v) The  most recent atomic beam interferometer was built by Shimizu, Shilnizu, and 
Takulna (1992). They use ultra-cold ls3 metastable Neon atoms the trajectories 

of which are deternlined only l)y the initM velocity of the atoms and by the 
gravitational acceleration (see Fig.7). 

Other  beam splitters and mirrors tbr atomic beams are under construction: Ex- 
amples are beam splitters based on the Kapitza-Dirac effect [Kapitza and Dirac 
(1933)], on Bragg scattering of atoms fi'om standing light waves [Martin et al. (1988)], 
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on the Stern-Gerlach effect [Miniatura at al. (1991)], or using the concept of velocity- 
tuned resonances [GbLsgow ctal. (1991)]. 

2.2. G r a v i t o - i n e r t i a l  e x p e r i m e n t s  a n d  t h e i r  s im p le  t h e o r e t i c a l  d e s c r i p t i o n  

In this section we describe the outcollle of the interference experiments with the 
help of the simplest theory, that is, by me,ms of the Pauli equation in a rotating 
and linearly accelerating fl'ann: under the influence of Newtonian gravitation. The 
measurability of the corresponding effects h~ts bccn discussed for atomic beam inter- 
ferometers by Clauscr (1988) and Audretsch and LS.lnlnerzahl (1992). 

2 . 2 . 1 .  G e n e r a l  f o r m u l a  for  t h e  p h a s e  shi f t  

We use the Pauli ('quation as field equation for describing the propagation of 
mat te r  waves with spin 1/2 in an external constant gravitational field j :  

ih~t!/' = [ -2mz + / 2rn.~: A - ',n,~. ~1,~. (2.2.1) 

Here we distinguish betwcell the inertial mass m.i and the gravitational mass rag. 
We transform to a fl'ame with const~mt rotation 03 and linear accceleration ~.  Then,  
to first order in ~3 and g. we find 

h - - A + ~ . ( F x i h V +  " i h ~ ¢  = [ -  2'm,~. ~ a ) - ( ' m , , , . ~ -  'm,.~/~). 'r-],~b, (2.2.2) 

where d represents the Pauli matrices. 

The  p h ~ e  shift for a mat te r  wave interference experiment can be calculated in the 
the semi-cl~ssical WKB approximation: '¢, = ~p exp (~¢) ,  with V~o -,~ 0 and V V ¢  ,-, 0. 
Substitution of this ansatz into (2.2.2) yields 

E~o = [ ~  + aS. ( f ,  + S )  - ( m g g  - 'm,,:ff) • ~o, (2 .2 .3 )  

with ~, := ~ x /7  denoting angular momentmn,  S spin angular momentum, and E := 

-c9t¢ and I7 := - V ¢  energy and momentum, respectively. We choose F = 0 at the 
beam splitter. 

An interference experiment must be done under quasi-stationary conditions, oth- 
erwise the interfcrelme fringes may wash out. For the theoretical description, however, 
wc ~ s u m e  strict stationarity. Nevertheless, the results obtained may be used in or- 
der to describe adiabatic changes of parameters.  In the calculation we take E to 
be constant. Now we solve (2.2.3) with respect to p and have, to first order in the 
interactions, 

p = [ a . ,  - 1: + ( , , , , y  1 2Ek.,  J ' (2.2.4) 
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Figure 7. Experimental setup of the Shiinizu et 
al. (1992) interferometer. After being trapped, 
tim ~toms f~l freely through the double slit. 
The experiment is done for different positions 
(heights) of the screen (fluorescent plate). 

p02 , Eint := v~. (r* x with Ekin :=  2m~ 

/70) + ('o~<jj- m/g) • 'F, and P0 be- 
ing the modulus of the momentum 
of the mat te r  wave at the position 
of the beam splitter. 

Then the resulting phase shift 
in an interference experiment with 
symmetric paths is given by 

1f 5¢ ---- ~ iff. de  

= _ l_h i Ei , td t ,  (2.2.5) 

where dt has to be calculated from 
the classical path and the group ve- 
locity of the wave packet as deter- 
mined by the plane wave solutions. 
Herewith we obtain the well-known 
forlmda [see Heer (1961), Overhau- 

scr and Colella (1974), Page (1975), Anandan (1977)] 

1 1 (?ll.q.q nzla)A + z--~-w. , 
b '¢= ~ a ~ . ( g x ~ 0 ) + ( m , j - ' r , ~ i 5 ) -  dt = ~ vo , , Y 

grav.& accel.effect Sagnac type e rec t  
(2.2.6) 

where A is the interfcromctcr area. Note ms characteristic results that  even for mi = 
m<~ the mass parameters  do not drop out and that .q" and 5 have an equivMent influence. 

The interaction energy a~. g of (2.2.3) (:an only bc observed if for one path a 
spin flip is imposed after splitting and before recombination of the two beams, see 

Mashhoon (1988). 

Effects of tidal threes, that is space w~riations of the eath's gravitationM field if, 
seem to be too small to be detectable in the laboratory by present-day interfcrolneters. 
Some detailed deriwttions are giveli in Sect.6. 

2.2.2.  E f f e c t  o f  a c c e l e r a t i o n  &: g r a v i t y  

Using the neutron interfcrometer, the effect of the earth 's  gravitational field [eq. 
(2.2.6) for g = v~ = 0] has beeu measured by Colclla, Overhauser, and Werner (1975). 
This is usually cMled the COW-experiment.  Bonse and Wroblewski (1983) have 
obained exactly the same interference pat tern in a reference fi'ame accelerated with 
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5 = ff [for 03 = 0 and no influence of gravity] (see Fig.8). Assuming the equality 

of inertiM and gravitational m~uss, mi = 'm,,~, this experiment proves the complete 

equivalence of acceleration and gravity as reflected in (2.2.4). Nevertheless, the effect 

remains mass dependent.  This will be imI)ortant for thc subsequent discussion of the 

strong equivalence principle for matt(,r fields. 

1 3 

; "Eh 9 

2 

H Figure 8. Experimen- 
tal setup of Bonse and 
Wroblewski (1983). n: 
incoming neutron 
beam; 1: fore crystal; 
2: interferolneter on 
traverse; 3: loudspea- 
ker nmgnets; 4: func- 
tion generator; 5: posi- 
tion transducer; 6: neu- 
tron detector measur 
ing the intensity; 7: po- 
sltion-to-pulse-height 
converter; 8: pMr of 
single channel analyzer; 
9: Al phrase shifter. 

Gravitational acceleration has also been observed for atomic beam interferome- 

ters by K~ e v i c h  and Chu (1991) and Shimizu, Shimizu, and Takuma (1992). Shilnizu 

et al. measured by interference at a double slit the change of the deBroglie wavelength 

arising from the gain in encrgy during the free fall of the atoms in the earth 's  grav- 

itational field (see Fig.9). In this way they tcsted not only the linear approximation 

in g but  the complete expression, 

5 ¢ = / E l l  2"rn:lgr 'm"~ v° 2 dt,  (2.2.7) 

which is a direct consequence of (2.2.3). 

An impor tant  feature of this cxperilncnt is the fact that  the center of mass of the 

wave packet moves in downward direction mass independently like a classical point 

particle ('i: = - g ) ,  i.e., in accor(bmce with the weak equivalence principle ('m,i = rag). 

On the other haud, the double slit at the same time causes a quantum uncertainty to 

the vertical momentum component leading to a m ~ s  dependent  interibrence pattern.  
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2.2.3. S a g n a c  t y p e  e f fec t  

The Sagnac effect for light has been ver- 

ified by Michelson and Gale (1925). For mat- 

ter wave interferornetry, the Sagnac effect:, is 

a consequence of the coupling of the rotation 

of the reference frame to the angular nmmen- 

tum of the mat te r  wave. For neutrons it, was 

measured for the rotating earth by Wcrner 

et al. (1979) and tbr a rotating turntable by 

Atwood et al. (1984). Riehle et al. (1991) 

measured the influence of the rotation of a 

turntable on atomic beams. For electrons 

the effect was measured by Hassell)ach an(1 

Nicklaus (1988, 1989, 1991). 
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F i g u r e  9. Fringe separation versus 
transit, time of the atoms crossing the 
interfcrometer of Shilnizu et al. (1992). 

2.2.4.  S p i n - r o t a t i o n  c o u p l i n g  

On the non-relativistic level, by using mat ter  wave interfcrometry, this coupling 

can only be measured  by flipping the spin along one of the two paths. Let tile length 

of the path, where tile spin is in its flipped state, be A/flip. Then the phase shift, will 

be 

b'¢ = a~. S ~ Almp (2.2.8) 
VO 

This effect has not yet been detected. However, for neutron interferometry a phase 

shift of 10-27r [Mashhoon 1988)] is expected and for the atomic fountain configuration 

of Kasevich and Chu (1991) a phase shift of ~r may be possible. 

2.2.5.  L i n e a r i t y  o f  m a t t e r  f ield e q u a t i o n s  

In addition to the effects described by (2.2.6), we mention here a mat te r  wave 

interference experiment which is important  h)r the general s t ructure  of quantum me- 

chanicM field equations. 

Into the SchrSdinger equation non-linearities of tile type b 111(1912)'~/,, b = const . ,  

have been introduced, which still allow to construct a conserved current. By bringing 

in at tenuators  at diff'ercnt positions into the neutron beams, Shull et al. (1980) found 

out that  the parameter  b, characterizing the strength of the non-linearity, has to be 

smaller than 4 x 10 -1~ eV. 
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3. C o n s e q u e n c e s  o f  m a t t e r  wave  i n t e r f e r o m e t r y  

Having the results of the interfcrometric experiments at hand, together with a 
simple theoretic~fl description, we are now in a position to address the question of 
how to read off from these findings the appropriate description of the spacetime in 
which the ma t t e r  fields propagate. 

We will first turn our at tention to the superposition principle a, nd to the mass 
dependence of the phase shift of a mat te r  field. These principles represent fundamental  
knowledge which is instrumental  in a constructive approach to spacetime aadomatics. 
Then,  more specifically, we will exploit the experimentally verified ~Ogra.,¢-coupling 
and compare it to the way a point particle couples to the gravito-inerti'M field. The  
relationship of the ~og.~,,.,,.4,-coupling to the equivalence principle (EP) will be described 
in some detail. 

3.1. S u p e r p o s i t i o n  p r i n c i p l e  

The  linearity of quantum mechanics represents a very fundamentM principle. In 
order to learn more about  quantum mechanics, this principle has been questioned 
by Shimony (1979) and Weinberg (1989), amongst others. The experimental  results, 
described in Sect.2.2.5, imply that mat te r  waves are governed by linear field equa- 
tions. Other  types of experiments give even stronger estimates, see Physics Today 
The linearity of the field equations will be fundamental tbr establishing a spacetilne 
s t ructure  by start ing from quantum principles. 

3.2. Mass d e p e n d e n c e  o f  p h a s e  sh i f t  

The  phase shift ill (2.2.6) is 'mass' depeudent.  Here 'mass' denotes a parameter  
m which is assigned to different types of mat te r  fields, such ~ electrons or neutrons, 
for example. 

If one used the same interferometer tbr diffcrent mat te r  waves, the resulting phase 
shifts would differ in accordance to the 'mass' of the quantum objects. In particular, 

the positions of the interference fringes tbr different particle types can be compared 
without  any reference to geometry. Results of this type we shall use in Sect.4.3. 

What  in point mcchanics is called 'mass', at tr ibutes to a quantum object a certain 
property related to its wave character. The  parameter  m is essentially a proportion- 
ality factor between the phase shift b'¢ and the gravito-inertial field (multiplied by 
the interferometer area). Or, turning the argument around, one may define the mass 
of a ma t t e r  wave by this kind of experilnent. 

3.3. S t r u c t u r e  o f  t h e  g r a v i t o - i n e r t i a l  c o u p l i n g  t o  t h e  m a t t e r  f ield 

We now turn to the more specific form of the coupling to the gravito-inertial field. 
As shown above, it has been experimentally verified that  the ~o,ar~.o¢-coupling appro- 
priately describes the behavior of a mat te r  wave in an external gravitational field. 
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The Pauli equation (2.2.1), howevcr, which we used in Sect.2.1.1 for the derivation 
of the general formula (2.2.6) for the phase shift, represents only the non-relativistic 
approximation of the gravitationally COul)led Dirac equation. Consequently, we have 
to understand the coupling of gravity to the Dirac equation and how this is related 
to the way gravity influenccs the motion of a point particle according to Einstein's 
heuristic derivation of general relativity theory (GR,). 

3.3.1. P o i n t  pa r t i c l e s  a n d  t h e  mV~o~,.,,.,,-coupling 

Let us have a look at Table 1 (see next page). Consider a mass point with mass 
m and velocity u i := d x i / d s  = -),(1,.E), where 7 := 1/~/1 - v 2. In the flat Minkowski 
spacetime M4, the point particle's force-free motion in an inertial frame of reference 
(i.e. in Cartesian coordinates) is governed t)y the equation 

du i , 
'm,-~. s'' = O. (3.3.1) 

Observe that  for the description of a world line x i = xi(s) of a point particle (holo- 
nonfic) coordinates x i with i , j ,  k . . . .  0, 1,2,3 is all we need from the geometrical 
backgroud. The natural (or coordin,~te) basis 0i, which is linked to the coordinates, 
will, however, not, be sufficient for describing, say, a spinor field ¢ in a non-inertial 
franm. Then we nmst turn to all orthonormal fl'amc e~ with (anholonomic) indices 
a, fl, 3' . . . . .  0, 1, 2, 3. In general, e~, will not b c a  natural framc, that is, the tetrad 
coefficients e ia in the decomposition ea = cia 0i will no longer be integrable. We will 
come back to this question in Sect.3.3.3. 

The star on top of the equMity sign in (3.3.1) means that  the relation is valid 
only with respect to the specific basis under consideration, here an inertial reference 
fl'ame represented by a (natural) Cartesian coordinate frame. In a non-inertial frame, 
eq.(3.3.1) becomes: 

d u  i 
" m . ~  + m { j~. } uJu k = O. (3.3.2) 

The inertial forces emerge ~s additional terms m jk uJu k bilinear in the velocity 

u i of the particle. For small vclocities v << 1 and a static lnetric 9 i j ,  which deviates 
fl'om its inertial values "qij -*,diag(-1, 1, 1, 1) only weakly, (3.3.2) yields 

d g  ,:, ~ goo 
. ,n~, + m v ( - ~ )  ,w, O. (3.3.3) 
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Table 1. 

e lementary object in SR 

inertial frame 

force-free 
motion in IF 

non-inertial fl'ame 

force-fi'ee 
motion in NIF 

non-inertial objects 

c o n s t r a i n t s  in  SI{. 

global IF 

switch on gravity 

local IF 

field equations 

Einstein's approach 

mass point m 

Cart.coord. x i 
ds2 * ~ij d x i d x J  

d l t *  * ,~. = 0  

arb. curvilinear 
coord, x ~:' 

d.,,'d. + {jk} ujuk = 0  

4O 

n(o{}, {})=0 
20 

* { j r }  " g.i/ = ' q i : i  , = 0 

n#o 
R i e m a n n  

i 
. - , J l .  = ,/,:j, { j~ , } l .  = o 

R i c -  ½ t'r( R i c  ) ~ m a s s  

gauge approach 

Dirac spinor ¢ ( x )  

orthon, hol. te trads 
i ca = 5aOi, ea.e/3 = 7la~ 

(i7':0~ - m ) ¢  =* 0 

orthon, anhol, tetrads 
ec~ --~ eic~oi 

c o f r a m e  ~ a  = e iadx . ,  

[iT~e~a(O~ + F,:) - m]¢ = 0 

F.~ := yP.i 7Z% 

~?a, Far3 = _ F ~ a  

16 + 24 

TO0, Re0 
R i e m a n n  -- C a f t a n  

• a _~.  (c.~, F~z)I.p (65o )  

R i c  - ½ t r ( R i c )  ~ m a s s  

T o r  + 2 t r ( T o r )  ,,+ s p i n  

(~ , r? ' )  (~,0) 

T ( O c ,  c, r )  = 0, R(0 r ,  F) = 0 
24 + 36 
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Accordingly, ill Newtonian parlance, tile Christoffel symbols {j'}~ ~ subsulne the 

gravitational field strength whereas the metric g00/2, with a suitable additive con- 
stant, represents the gravitational potentiM. 

In Newtonian mechanics, the equation of motion for a point particle with inertial 
mass m i  and gravitational mass m~ a reads 

d~ 
m i - -  = -m:jV~og~,~. (3.3.4) 

d t  

If and only if the proportionality (in suitable units: equality) of inertial and gravita- 
tional mass is valid (weak equivMence principle, or weak EP), then (3.3.3) and (3.3.4) 
coincide, provided we have approximately 

gO0 "~ - -  1 "~- 2 ~Ogra v . (3.3.5) 

This line of re~oning is represented in the 2nd column of Table 1 and, for histor- 
ical reasons, named as "Einstein's approach". As is evident from (3.3.3) and (3.3.4), 
the mV~og~,o-coupling or, synonymously, the m{ }-coupling, can be considered as its 
characteristic feature. And then the weak EP directly yields the universality of the 
free-fall, that  is, the mass independence of the equation of motion (3.3.4) or (3.3.2), 
respectively; compare the discussion in Einstein (1955). 

It should be clear, however, that  even if the equation of motion is mass indepen- 
dent, the (time-independent) H~mfilton-Jacobi equation tbr the point particle in the 
gravitational field 

',,zgj. 'F = E (3.3.6) 
2mi  

does depend on the mass also after the application of the weak EP (Dehnen, private 
communication). The analogous effect is then expected to occur in SchrSdinger type 
equations for mat ter  fields. 

3 .3 .2 .  Dif fe ren t  equ iva lence  pr inc ip les  

We applied in (3.3.4) the weak EP to a point particle. However, it should also be 
possible to formulate it for mat ter  fields. Since a point particle is locMized whereas 
a field is spread over spacetime, the EP has to be discussed separately for these two 
cases. Conventionally, an EP is called weal,:, if, within some theoretical i¥amework, it 
leads to the universality of free fall (sce Sect.3.3.1). It is called strong, if it implies a 
special form for the equation of motion of a point particle and for dynamical equations 
in general. We will use this terminology. 

If we abstract from the Newton-Einstein type of equation of nmtion of Sect.3.3.1, 
then for a classical point particle the weak and the strong EPs read, respectively: 

(i) In the absence of any interaction other than gravitation, point particles, with 
the same prescribed velocity in some point of spacetime, nlove along the same 
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pa th  irrespective of their mass. This gives rise to a path  st1"ucture of spacet ime 

according to [cf. Ehlers and K5hler (1977) and Coleman and Kor te  (1980)] 

dx  i 
'h i + H ( x ,  u)  = a u ~ , u ~ := 

d A '  
(3.3.7) 

for some pa rame te r  A and solne flmction (~. In the context of Newtonian physics, 

this means the equality of incrti~d and gravitat ional mass. 

(ii) Strong EP or the equivalence of gravity and acceleration: Locally, the acceleration 

caused by gravity can bc t ransibrmcd to zero for a point particle provided there 

are no fields present other than gravity. In other words, locally the point particle 
is not accelerated in some specific coordinate sys tem and for some parametr iza-  

tion of the path: 'h t' -* 0. In the general-relativistic case, this leads to a pro jec t ive  

s t ruc ture ,  
.it i + F jk i  uJu  k = a u 'i (3.3.8) 

for some connection Fjk  i. 

3.3.3.  M a t t e r  w a v e s  a n d  m i n i m a l  c o u p l i n g  

Turning now to ma t t e r  waves, wc will follow up the discussion of the ' gauge  

approach '  column in Table 1. Taking a Dirac field in the Miukowski spacet ime M4 as 

the generic case, we h~ve to s tudy the Dirac equation in inertial and in non-inertial 

frames according to the s tandard formalism [cf.McCrea (1987, 1989)]: 

A sp inor  field is linked essentially with the notion of orthonormali ty,  since it 

derives ul t imately from the representations of the Lorentz group. By contrast ,  a ten- 

sor can easily be generMized to linear transformations.  To define a spinor field in an 

M4, we need an orthono'lTnal 'reference f i 'amc at each event, i.e. a basis of four vectors 
{ea} (a  = 0 ,1 ,2 ,3)  such that  

ga¢~ := g(e~, e¢~) = d i ag ( -1 ,  1, 1, 1). (3.3.9) 

The  vector basis e~ can be deconlposed with respect to tile tangent vectors Oi of the 

coordinate lines according to e~ = e i~, cgi. The  1-form basis "0 ~ will be defined, in the 

usual way, by 

,t~f~(e~) = 5~. (3.3.10) 

Its decomposit ion reads '~)~ = e f  dxJ.  In an ]1//4, both  torsion and curvature  vanish, 

T '~ := d~ ~ + Ff~ ~ A fig : .  0, Ra f~ := d F J  ~ - Fa 7 A FTfl ----- 0, (3.3.11) 

with Fa~ = F i a ~ d x  i as the connection 1-form and F ('#3) = 0 (metricity).  Therefore 
there exist global frames for which 

1 "~f~ = 0 (3.3.12) 
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and 
d~ a = 0. (3.3.13) 

These are the so-cMled incrtial fi'amcs. By (3.3.13), such frames are holonomic in an 

M4, i.e. there exist coordinates systcms {x ~} (spatial Cartesian coordinates + time) 
such that  

= ~ d x .  (3.3.14) 

Thus ,  in an M4, the "Cartesian coordinate bases Mready provide us with the global 

orthonormal frames necessary for the description of spinor fields. However, for the 

transition to gravitational thcory via the strong EP, we have to use non-inertial frames 
and these must be anholonomic (d',9 ~ ¢ 0 and F ~z ¢ 0) if they are to remain orthonor- 

real. 

Let be given the Dirac equation in an inertial flame of reference (i"fl 01 - m ) ¢  * 0. 
The "7 ~ denote the Dirac matrices fulfilling 7 (i ~5) _- .q is. The  important  step consists 

in the transition to a non-inertial frame. And here we take recourse to the COW- 

experiment [Colella et al.(1975)] and to the BW-experiment  [Bonse 8~ Wroblewski 

(1983)], see the discussion in Sect.2.2.2. The COW-experiment verifies the ~09~a~ e-  
coupling of the Newtonian potential to the mat ter  field, as given in (2.2.2). The 
BW-experiment,  on the other hand, shows that the gravitational field in (2.2.2) can 
be simulated by means of a linear acceleration. The  corresponding (miE- ~ ¢ - t e r m ,  

however, had been derived by fornmlating the Pauli equation with respect to an ac- 
celerated fi'alne. Consequently, this procedure of transforming a mat te r  field equation 
froxn an inertial into a non-inertial frame of refcrcnce has been verfied by COW in 

conjunction with BW. Needless to say that  also the Sagnac term in (2.2.2), which we 
won by evaluating the Pauli equation on a turntable, belongs to the established results 
of mat ter  wave interfcrometry, sec Scct.2.2.3. In or, her words, the 'Mashhoon'- term is 
the only hypotheticM one in (2.2.2). 

Returning to the Dirac equation, we transibrln it into a non-inertial frame in an 
aualogous way as we did it for the Pauli equation, llalnely by rotating the local fi'axnes 

e~ into a non-inertial position. Thus we relax the conditions (3.3.12) and (3.3.13). 

This results in (see Table 1): 

We recognize that  the gravitational potentials e ~  (or ej ~) and F~ ~'r, which become 

manifest in non-inertial frames, deviate fi'om their inertial values 

In other words, the (eft ~, F.~ ~7) describe the gravito-inertial field, or rather  its poten- 
% 

tials. In an M4 the potentials can be 'trivializcd' globally, since both torsion T ~ and 

curvature R ~'r vanish. 
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The leading additional terms, picked up by the Dirac equation in a non-inertial 
frame with ei~ = ~ 4- h'~¢~ and h,~, Fi ~ ~ 1, read, 

i 
(3.3.17) 

It is of the general type of coupling the matter wave fnnction ¢ to the gravitational 
potentials. In non-relativistic approximation, compare, for instance, Hehl et al. (1990, 
1991) or L~mmerzahl (1991), it degenerates to the ~g,.,.,'C-coupling of (2.2.2). And 
this coupling has been experimentally verified, as wc saw in Sect.2.2.2. 

Instead of putting the Dirac equation into a non-inertial frame, as in Table 1 
or in (3.3.15), we start in Sect.5 directly with the ordinary special-relativistic Dirac 
Lagrangian. In non-inertial frames, the Lagrangian picks up terms of the type given in 
(3.3.17). Thus for fields, the strong EP can be fornmlated as the pT~nciple of minimal 
gravitational coupling to the matter Lagrangian. It is no longer necessary to speak 
about objects which one observes directly, like the point particles in the Einstein 
approach, but rather about the corresponding rnateriat Lagrangian. Apparently, this 
version of the strong EP is general enough for accornmodating matter fields carrying 
spin and the corresponding equations of lnotion for spinning particles [see Sexl & 
Urbantke (1983)]. A detailed presentation of this I)rinciple of minimal coupling has 
first been given by Sciama (1962). 

To sum up: We only need to know the behavior of a (first order) Lagrangian in 
a non-inertial reference finmc, then the coupling to gravity is determined. Violations 
of the strong EP would require the existence of noll-minimal (Pauli type) terms in 
the Lagrangian containing the gravitational field strengths torsion and/or curvature 
explicitly. This ends our heuristic considerations. 

4. Cons t ruc t ive  ax iomat ic  approach  to space t ime g e o m e t r y  

We now turn to the first of the two independent procedures for establishing the 
geometrical stucture of spacetime: the constructive axiomatic approach to spacetime 
geometry using dements of quantum mechanics. 

The aim of a constructive axiomatics is to discover and to describe the geo- 
metrical structure of spacetime by means of the behavior of appropriately selected 
physical systems, called pri'r/dtive objects, and of particular physical effects, called ba- 
sic experience. The intended final theorem is of the type: "If spacetime is the entity 
which dictates the particular primitive objects their typicM behavior, then spacetime 
mathematically is ..." The method thereby is to enrich the manifold step by step 
with mathematicM structures read off from experience. The postulates used nmst 
be formulated in a geomctry-fl'ee manner. Our procedure will be analogous to the 
one followed by Ehlers, Pirani, and Schild (1972), who have used free point particles 
and light rays as primitive objects. Instead, we will use matter fields ¢ : .M ~ C" 
as primitive objects. Mass and spin, a,~ their degrees of freedom, will be essential 
in our scheme in order to establish the full richness of spacetime geometry. In the 
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following we will bricfly summarize a simplified version of the scheme as developed 

by Audretsch and L~nmlerzahl (1991a, b) and L~mmerzahl (1990): 

4.1. E s t a b l i s h i n g  t h e  m a t t e r  f ield e q u a t i o n  

Because it is difficult to operationally justify from basic observations particular 

field equations for quantum objects (like the Dirac equation), we will s tar t  from the 
fundamentM experience related to the dynamics of quantum mat te r  fields. We will 

derive a generM partial differential equation governing the dynamics of the ma t t e r  
field considered. It will turn out that  the structure of this field equation is essentially 
determined by demanding a deterministic evolution with finite propagation speed as 

well as a superposition principle. 

(i) We postulate a deterministic evolution of the field as an ordered behavior 'in 
time': There is a (l+3)-slicing of the 4-dimensiomd manifold J~4 with monoton- 
ically increasing parameter  t such that,  given a field on some hypersurface, the 
field will be determined uniquely on a subsequent or ' later '  hypersurface. The 
hypersurfaces for which this s ta tement  holds true are called spacelike. 

(ii) For introducing the superposition principle, we require the evolution of an ar- 
bi trary stun of initial da ta  to result in the suln of the separately propagated 
fields. Hence the evolution nmst be linear. One finds an abstract  Cauchy prob- 
lem d.~bt = G~'~b~, where '~/'t is the field '~, for fixed t and Gt the generator of the 
dynamical evolution. If as initial data  deriwttives of the field are needed in order 
to uniquely determine the field on a ' future '  hypersufface, then we arrive at a 

higher order Cauchy problenl, see Audretsch and L£mmerzahl (1991a). 

(iii) According to experience, signMs cannot I)ropag~te with infinite velocity. There- 
fore for M1 initiM da ta  with compact support  we demand that ,  after some time, 
the propagated field still has compact support.  This rcquirement implies for the 

generator Gt to be looM. This has the important  mathenmticM consequence that  
the evolutionary system reduces to a partial differential equation of first order 

iTi(x)O,'O(x) - M(x )¢ (x )  = O, (4.1.1) 

where 7 i and M are some comI)lex n x n matrices (not necessarily Dirac matri- 
ces). In addition, this first order system can bc shown to be weakly hyperbolic, 
tha t  is, the spacelike hypersurfaces are non-characteristic and all zeros of the 
characteristic equation H(x,  h) := det(7%:i ) = 0 are real; for a weaker version of 
postulate (iii), see Audretsch and L[hnmerzahl (1991a). 

(iv) The  probability interpretation of quantmn mechanics is based on a real current 
j l  which is bilinear in the fields. Its zeroth component j0 is interpreted as prob- 
ability density for finding a I)article at a ccrtain location. The  only object in 
our theory which carries a contravariant vector index is 7 i. Therefore we require 
j i (x)  = ,¢+A7i'.¢ to be re~tl for some matr ix A a, nd for all "4,'s. This implies that 

A7 ~ is hermitian: (ATi) + = A7 ~. 
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4.2. E s t a b l i s h i n g  t h e  c o n f o r m a l  s t r u c t u r e  

(v) The  shock waves ( that  is, the singul,~rities or characteristics) of the field equation 
(4.1.1) represent our first class of primitive elements. Jumps of lowest order along 

a hypersurface ¢ = 0 obey 
0 = A'~~k~a, (4.2.1) 

with some a E C"  describing the helicity states on the hypersurface and k~ = 0i¢. 

The solvability condition of (4.2.1) is the characterstic polynomial 

H,:(x ,  k) = det(A"/L:~) = g"~ ...... k~  . . .  k:~,, = 0, (4.2.2) 

with some real tensor g,:L...~,. Postulate (v) tbrmalizes the experience that  there 
is only one light cone at any point x ( that  is one future and one past light cone) 
and there are only two helicity states. The lat ter  imply that  the nmltiplicity of 
the zeros of the characteristic polynomial He must be two: 

k)  = k ) )  . (4.2.3) 

The  uniqueness of the light cone leads to 

H o ( x ,  k)  = g'iJ(x)k.~kj = O. (4.2.4) 

Accordingly, n = 4 ( that  is, '~/, has 4 complex components) and ,),i and M are 

4 × 4-matrices. 
The  impor tant  consequence is that there must exist a class of real second rank 
tensors giJ (x ) .  Because elements of this (:lass of g~J arc fixed by the procedure 
given above only up to a positive scMar function, we are led to the notion of 
a conformal s t ructure.These gLi can bc proven to be non-singular and to have 
signature -t-2. By means of the conformM structure we can construct or thotet rads  

fulfilling .. -~" j e a g~3e,~c~ = ~/~/~, where 7/~ ~ is the Minkowski metric. Therefore we are 

able to represent Lorentz-transtbrmations. 

4.3. 

(vi) 

E s t a b l i s h i n g  t h e  R i e m a n n i a n  s t r u c t u r e  

In the next step we return to (4.1.1). Wc sclcct a special class of mat te r  wave 
solutions, so-called approximate plane wave solutions, by making, according to 
the WKB-procedure ,  the ansatz ¢ --- aexp  ( i S ) .  We demand that  derivatives of 
a, that  is, variations in the amplitude, are negligible. We then arrive at 

0 = (7~p~ - M(°))a, (4.3.1) 

iT~O~a = M ( 1 ) a ,  (4.3.2) 

for some 4 × 4-matrices M (°) and M (1). The solvability condition of the first 
equation gives a polynomial of fourth order in p, the Hamilton-Jacobi equation: 
H ( x , p )  = (gijp,~pj)2 + O(p3)  = O. 



390 

The  subclass of f ree  mat te r  waves obeying (4.3.1) and (4.3.2) will be our second 
type of prinfitive elements. The property 'free' is represented by the requirement 
that  H ( x , p )  = 0 exhibits the symmetry  given by the conformal structure.  Ac- 
cordingly, if a momentum p is solution of the given Hamilton-Jacobi equation, 
then another  nlomentum p', which results from the first one by an active Lorentz 

transformation p' = Lp,  should also solve the Hamilton-Jacobi equation. By 
means of the fundamental  thcorcm tbr vector invariants it follows that  H ( x , p )  

must be of the fornl 

p )  = - ( x ) )  (g'Jp pj - (4.3.3) 

(vii) 

with two scalar  m a s s  f u n c t i o n s  1/1 and V2 and the metric gi j  as introduced above. 
Then  H ~ ( x , p )  = g i j p l p j  - V~(x )  = O, a = 1,2 gives the equation of motion 'for  
the group velocity v "i = giJpj  of a wave packet. The  mass functions G , ( x )  turn 

out to be real. 

Up to now it is not excluded that different types of quantum objects (denoted 
by the index A), which all obey the aforementioned requiremcnts, may lead to 
different sc~dar mass functions V:~, (x). Based on experience with mat te r  wave 

interferometry, we require for free mat ter  waves the following: For the same 
physicM set-up (the same intcrfcrometcr apparatus under identical conditions), 
we perform interference experiments at M1 points of spacetime with different 

quantum objects, such as electrons, neutrons, etc.. Then  the pat tern  of the 

interference fringes, up to a constant factor, nmst be identical. This means 
that  V:~ = m~ VI~, with m:~, = cons t . .  Therefore dividing H:~, by Yll and 
introducing ~0 "i'd := I~, t g'i:i' we find Hx~ (x, p) = OiJp.ipj - m 2 .  Causality requires 

m 2 to be positive. With O.i.d we arrived at a R i e m a n n i a n  me t r i c .  Note that  this 

does not mean that  torsion is vanishing, it has simply not yet been established. 

4.4. E s t a b l i s h i n g  ax ia l  t o r s i o n  

In the Morcmentioned reasoning we have used so far the properties of the Hamil- 
ton-Jacobi equation only. Using further properties of the mat te r  fields, as displayed in 

equation (4.3.2) governing the differential behavior of the amplitudc a, it is possible to 

introduce torsion [see e.g. L~hnmcrzahl (1990), compare Audretseh and L~mmerzahl 
(1987)]. For this purpose, fi'om (4.3.2), we can derive an equation of motion for 
the amplitude a, which is of the tbrm viO.ia = v ' iF i (x )a .  In addition, we can show 
that  the 7-matrices obey the Clifford algebra rule 7('/'y j) = g.ij which the usual Dirac 
algebra can be derived from. Then one can prove that  the only independent bilinear 
expressions are the probability current "~'y~¢ ,-, v i and the spin current '~75q, i¢.  By 
means of the propagation equation for the amplitude it follows that  the propagation 

equation for the spin current reads 

• {} 
• d ( D . i S  k + Q i k l K i . S  j )  ,,~ S k (4.4.1) 
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for some ;~xial vector K.  Thus t, hc I)rol)ag~ttion of the spin vector introduces an axial 

torsion. 

To sum up, we have shown: []'spacetime is the entity which prescribes the behavior 
of the characteristics, of the fl'cc matter waves, and of the spin states in the way 
specified above, then spacetimc is a RicmanTt-Ca'l~tan spacctime with axial torsion. 

By building wave 1)ackets out of fl'cc m~ttter waves, it is possible to obtain the 

paths of the max ima  of the wave 1)~mkcts thus introducing a l)ath structure.  These 
paths ~re the geodesics 

• { i } , f l y":=  c~v ~ (4:4.2) v J O.iv' + .'i~: 

of a Riemannian spacct ime with the metric Oij defined above. Indices are moved with 
Ois" and its inverse and the Christoffels arc also built from this metric. Hence the 

equation of motion (4.4.2) is. with respect to the Ohristotfi~.l COlmection, the same 

for all types of (llt~l, n l ;un l  ol).ie~:t.~. Thcrcrorc il; (lcthms a R.icnmnni~m spacetime. It, 
dclnonstn~tcs that  the results of the ;~xiomatics of Ehh;rs, Pirani, and Schild (1972) 
and, in addition, the r(;striction fi'om Weyl geometx'y to a Riemann geometry  [Au- 

dretsch (1983), and Audretsch.  G~Lhh'r, and Str~mmann (1984)] is obtained as lilniting 
case of our axiomatics based on mat t e r  fiel(ls. 

In re t rospect  we can Slmcify the elements of quantmn mechanics which the ap- 
praoeh is based on: They  (,ssentially agree with the elements which are necessary to 
physically describe ma t t e r  waw,' interference. 

5. Gauge approach to spacetime geometry 

Having in the last section I)cen led to a si)c(:ific spacetinm ge()metry by tile ax- 

iomatic approach,  which is itself based on CXl)ericncc extracted froln ma t t e r  wave 
interferolnetry, we arc now turning our ~tttention to a gauge al)pro~mh of gravity. 

These considerations will bc ind(:pendent froan those of Sect.4. However, a gauge 

approach is fulldalm,ntally based on th(, notion of ~ ma t t e r  field and its invariance 

properties.  In othcr wor(ls, the notion and the existence of ma t t e r  waves (or fields) is 

the connecting clelnent of both apl)roachcs. In this sense, they ~u'c not independent  

but  ra ther  both  b;~s('(1 on the quantuln mechanical C-field. Accordingly, it is not by 
chance that  the let ter  g, (witch ~m all~tlogolls  meaning) features in Sect.4 as well as in 
Sect.5. In tim folh)wing we will resmne the (:OllSidcr¢~tions of S('ct.3.3. 

Soon after Yang and Mills (1954) COul)h:d the conserve(l isosl)in current and its 
Noether-relatcd SU(2)-invariance to l.hcir newly inl, rodu('(,d B-gmlge-field, U t iyama  
(1956, 1980) extended the Y~mg-Mills i(lc~t to other non-Abclian groups [see O'R.zfifear- 
taigh (1979)] and applied it, in particular,  the the Lorcntz group SO(1,3). In the 

context of 'gauging'  the Lorcntz group, Ut iyama was able, using some additional hy- 
potheses, to recover general rcb~tivity (GR). Since in Newton-Einstein gravity the 
source of the gravitat ional field is the mass, i.e. the momen tmn  current,  and the cor- 

responding symlnet ry  th(, t'Fansla.tio'n inwu-ian('e, clearly a gauging of the hill Poiucar5 
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group as the scmidirect produ(:t of the translation group T4 and the Lorentz group 

SO(1,3) w~:s desirable. This was carried out by Seialna (1962) ~md Kibble (1961). 

They  foul,d that the. R.iemalmian Slmcctime of GR. must be enriched by a torsion field 

[Cartan (1986)] such that the t:olmeetion renlailm metric-compatible, in other words 

the length of a vector, as in general relativity, still stays constant under pal'Mlel 

transport .  

In the Sciama-Kibl)le al)I)roach [scc also Trautman (1973, 1980) and Hehl et al. 

(1976)], which used structures investigated earlier by Caftan (loc.cit.), the analog 

of the Hilbert Lagrangian of the underlying RJemann-Cartan si)acetilne was used in 

the gravitational action flmeti(m. As a consequence, the torsion field is confined to 

matter ,  i.e. in vacuo the sl)acetime remains Riemalmian, as in general relativity. Sub- 

sequently gravitati(mal models with propagating torsion were proposed, leading finally 

to a general framework of a Point:ard gauge, theory with a gravitationM Lagrangian 

quadratic in torsion and (:m'wmu'e. (a) 

Here we will merely sketch the apl)ropriatc gauge field-theoretical formalism for 

a mat ter  field, rel)resented by ~L sl)inof or tensor-wducd p-form, illtcracting with the 

gravitational potelltials (,O '-~, F (':l~) of (3.3.16) using the calculus of exterior differential 

forms [see Thirring (1986)]. 

5.1. Poincard invariance in Minkowski  space t ime  

Let us f rs t ly  suplmse that there is lm gravitational field and that  consequently 

the spacetime is Minkowskian, or M4. In an M4 the group of motions is the (4 + 6) 

parameter  Poincard group, which is generated by translations and Lorentz rotations. 

The state of a particle is associated with an irreducible unitary representation of the 

Poinca% group aud is ch~tl'a(:terize(l by its mass and spin, as well ~s by its lnomen- 

tunl. (4) If one realizc.s a rel)re.sentatioll of the Poin(:ar(., group by means of a mat te r  

field over a Minkowskian sl)a(:etilne, the lmttter field ¢(x)  transforms as a spinor or 

tensor under Lorentz transtbrmations, dcl)cn(liHg t)n whether wc are dealing with a 

fermion or a boson, respet:tively. The sl)inorial mat ter  fichl is fluldalnentM .... leptous 

and quarks are deseril)ed in this way ~m(I its characteristic features are essential in 

our later considerations. 

(3) One may consult in this context tile articles of Goenner (1987), Ivanenko & 

Sardanashvily (1983), Kil)ble & Stellc (1986), Kopczyfiski (1990), Lord & Goswami 

(1986), Meyer (1982), McCrca (1987, 1989), Miclke (1987), Nc'enmn (1980), Ne'eman 

& Regge (1978), Nester (1984). and Hehl (1980). 
(4) Compare, for example, the very (:lear and intuitive description of Sexl and Ur- 

bantke (1982). 
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5.2. F ir s t  order  L a g r a n g i a n  o f  a m a t t e r  f ield 

The  dynamical bchaviom' of ha'mionic and bosonic mat te r  in an/1//4 is determined 
by their Lagrangian 4-titan L which wc here refer to Cartesian coordinates and hence 
to the inertiM frames of (3.3.14), 

L -* L(¢,  d.cb), (5.2.1) 

where the p-fornl  '(/, is the mat te r  fichl. In the sense of conventiomd Lagrangian field 
theory, L may depend at nlost Oil first dcriwttiw.'s of the mat te r  field '4'. Via the action 
principle one finds the mat te r  fickl equation depending at most on second derivatives: 

~L _ OL 0I, ) 
5 ¢  - 0,/, (-1)~'d(od.¢, = 0. (5.2.2) 

For an isolated system, i.e. if' external fields do not act, the action flmction 
~soc ia ted  with (5.2.1) is inwu'iant under Poiucar6 transfornlations. This implies, via 
N o e t h e r ' s  thcorcln,  t, hc coliscrvat, ioll of lllOlllCntllln a, nd angu la r  nlonlentnnl :  

d E .  = 0. (17,,t~ - '~[p A E~ 1 = {}. 

where 
OL ( OL 

St, = e,.,JL - (e,.,jd.,/,) A ( ~ )  - (e~,J.¢) A ~-~) 

is the canonicM (trod asymlnctric) cnergy-nmmelitum 3-t'orln and 

T,,t~ = G[~/~ 1.¢ A ( ~)OL 

(5.2.3) 

(5.2.4) 

(5.2.5) 

is the c~monicM spin angular momcutum 3-form. If '¢ is a 0-form then e,~J'¢, = 0 
and the last term of (5.2.4) drops. In equation {5.2.5) G[~,t~] are the spin generating 
operators.  The  "inertial current.4" (E,,, "r,.,:/~) represent in field-theoretical language 
the particle's mass and spin accordingly the al)l)ropriat(' names are m o m e n t u m  
current and spin current, respectively. As is evident from (5.2.3) as well as from the 

labels of the irredm:iblc unitary rcprescnt,~tions of the Poincard group, the inertiM 
behavior oL say, a fernfion is not only characterized by its mass and its momentum 
current,  but  also a Slfin concept is ncccssary for a complete representation of the 
inertial properties of the fl.'rmion. 

5.3. M i n i m a l  c o u p l i n g  to  g r a v i t y  

If we now introduce uon-incrtial rcfcrcncc franms in the M4. (5.2.1) reads 

L = L('t? ~, .¢, D'¢)  = L('0 ~, F ~'/3, .¢, d e )  (5.3.1) 

with the cow~riant exterior derivative D e  := (d + F ~f~ G,,/~)¢. Tctrad and connection, 
but  not their dcriw~tivcs, al)pcar Cxl)li('itly ill the Lagrangian. 
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As we saw in our discussion in Sc(:t.3,3.3, the strong EP amounts to the following: 
Viewed locally, special relativistic mat ter  in z~ non-inertial fl'ame behaves in the same 
way ~ in a corresponding gravit~ttional fi(,ld. 

To which quantity characterizing a lnatt, er fi(:Id do we ztpply the strong EP? 
Certainly to the Lagrangian (5.3.1). Since the strong EP is st local principle we ought 
to apply it to the difl'erenti~tion h,vel of the lowest possible order. In generM, the 
mat ter  field equation (5.2.2) is of se(:ond diIfcrentb~tion order so that  in the presence 
of ~ gravitational fichl (:urw~ture terms could ~dr('a(ly cmerg(,. Moreover, we know 
that  the Lagrangian enters Cxl)licitly the l~ymnan-(luantization of mat te r  fields and 
determines the tr~u~sition anq)litu(les. Consequently in the theory of mat te r  fields the 
Lagr~ngian possesses n('~rly the qu;flity of ~m obs(,rvable. 

We stress ag~tin that  in th(' original Einstcinian argumentation the EP h ~  been 
applied directly to the acceh'r~ttion or tlw equation of motion of ~ point particle, i.e. 
on the level of (5.2.2). We dispensed with the point particle concept and found only 
the level (5.2.1) or (5.3.1) suitabh: for the ;tI)pli(:~ttion of the EP. Consequently we 
indeed recogniz(; ('~)'~. F ''/~) ~ts the .qra'oitational potentials. According to (3.3.12) and 
(3.3.14), they can b(, glob~dly trivializcd in an M4 sin('(' they are only induced by the 
choice of non-incrti~tl rcl'crcnce fr~tmes. 

5.4. R i e m a n n - C a r t a n  g e o m e t r y  o f  s p a c e t i m e  

Following McCrea (1989). the transition to gravitational theory is executed by 
requiring only the lo(:~d v~tli(lity of special relativity and of conditions (3.3.12) and 

(3.3.14): 
(',7% F '':t~) --* (b~'dx~ 0), locally. (5.4.1) 

Thus we ~rrive at a Riem~um-C~u'tan si)~wetime U4 which is characterized by a local 
Minkowski lnetrie (3.3.9) ~uld a conncctioH F ~qj which is lnetric (compatible): F ((*/~) = 
0. Its deviation froln a Minkowskian M4 is me;~surcd by the torsion T ~ and the 
curvature R ~*/3, which ~tre both defined in (3.3.11). In fact, it is possible to prove that  
in a U4, ill a, suitable tetr~:~d ~tll(l in suit~tbl(' coordinates, condition (5.4.1) can always 
be fulfilled. Consequently. in such a "local im;rtbd system' the gr;witational potentials 

are trivialized and (:an no lollg('r bc i)crecived, it represents the 'Einsteinian elevator' 

of the U4. Now the L~gr~ulgi;:ul (5.3.1) has its Sl~(,(:i~d-rcl;~tivisti(" tbrm only locally in 
a suitable tctr~d. Tlw constr~dlLt, s (3.3.11) m,ty bc reb~xed since torsion and curw~ture 

cannot appear in t, hc L~tgr~ulgii~n(5.3.1): 

T" ¢ O, R,. :~ ¢ 0. (5.4.2) 

Thereby we recognize torsion and curvature as g'luvitational field strengths, and a 
Riemann-Cartan space, time U4 ('merges as ~I)propriatc for the dcscriI)tion of gravi- 
tational phenolnena. Thus. the ga, ug(, al)proaeh ~uld the constructive axiomatic ap- 
proach independently lead to the same result. 

To support  our line of r(,~soning, we ;~(hl the following rcmal'ks: The strong EP 

is a heuristic principle, since the notion 'lo(:~d' used in its fornmlation is not exact. In 
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exploiting tim strong EP. we required stronger locality as compared to the one used in 

'deriving'  GR. The  following l~rocedure is als0 ('oncciwtble. We rewrite the constraint  

of vanishing torsion (3.3.11)1 in terlns of the connection 

T °< = 0 <==> Y'<m = {eo<Jd.Of¢ - e,~Jd,Oo< - (eo<Jefdd,O..).o" }. (5.4.3) 

When  this connection F o<fj = F('/~('0, d'0) is subst i tuted into (5.3.1), then, in non- 
inertial systems,  L deI)ends (m 'Oo< ~s gravitational i)otential and only the constraint  
of vanishing curvature  can be l'claxcd, whereas torsion remains zero. Accordingly one 

arrives at the Riemanniau sl)acetilue V4 of GR.. However, since it is always possible 
to make a te t rad and coordil,~tc transl'orm~tioll at a point so tha t  (5.4.1) is fldfilled 
at tha t  point, it follows fi'om (3.3.13) that  in a V4"the resulting te t rad  satisfies the 
constraint  d'Oo< = 0 at the 1)oint. a constraint  that  is non-h)(:al and hence contrary  to 
the spirit of the EP. Provided we do not wish to stay in the context  of point particles 
and their trajectories in ~m "Einsteinian elcvatorL there seems to be no reason for 

requiring the constraint  d'~ ~': = 0. Hence everything spcaks in favor of leaving the 
adjus tment  of torsion to the dynanfics of the gravitational field and not to rule it out 

in the context  of kinematics. Alternatively, one could have rewrit ten the constraint  
(3.3,11)2 of wmishing ~(:urw~tm-c in terms of the conlmetion: 

R,,/~ = {} ~ P 0<~ --* 0 (globally) (5.4.4) 

i.e. in tile case of vanishing curwtture there cxist global 1)arallel frames. Then,  in a 
way analogous to above, we would have ])cell led to a telcparallel spacet ime T4, i.e. to 
a U 4 with wufishing curwtture. But  a T4 for ferlniOllS is 11o more convincing than the 

174 of GR. For a gravitat ional  t, heory of f e r m i o n i c  mat ter ,  the U4 with its 'Einstein 
elevator '  (5.4.1), which is indisl)ensablc ibr a correct application of the strong EP, 
offers the appropr ia tc  geometrical  framework, but tbr scalar or macroscopic ma t t e r  a 
V4 or  & T4 is Mready sutficicnt. 

We coml)lete our presentation with a short  discussion of the appropr ia te  Lagrange- 

Noether  formMism. As in any other gauge theory, now that  the interaction has been 
switched on by means of (5.4.2), the Lagrange-Noether  formalism, which originally, 
in the 'pure  gauge'  c~tsc, h;,uls t() (5.2.2 5). has to be redone. By s tandard  methods,  
we find in the U4 th(, ma t t e r  fichl ( 'qnation 

5 L  _ O L  (-1) z'D (5.4.5) 
a.,l, -D-b-7 " 

and the Noether  identities 

DEO< = (e , , JT t~) A Ezj + (e , ,JR t~'t) A ~-r~'~, 

The  new definitions of tim un)mcntmn current 

D'r~,tj - @~ A Eo<] = 0. (5.4.6) 

5L OL OL 
Eo< := 5,~o< = eo<JL - (e,_~J D e )  A OD'4------~' - (eo<J'0) A 0,~/---~ (5.4.7) 
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and of the spilt current 

~L (gL 
• - = c ' %  ¢ A - -  (5 .4 .8)  

~-"'J'~ " -  bE,:J ~ OD'#, 

show that  these inertial currents arc COUl)led to the corresponding gravitationeJ po- 
tentiMs. 

In an M4, the Noether  laws (5.4.6) reduce to (5.2.3). The  volume force densi- 
ties showing up on the right-hand side of the momentum identity ill (5.4.6), ne~mely 
(torsion x momentunt)  and (curvaturc x spin) i.e. (field strength x current) are re- 
markable. There  is a (:lose ~ul~tlogy hcrc with the U(1)-gauge field theory (Maxwell's 
theory) where the Lorcntz for(:c is cx,mtly of this type. 

These Noether  l~ws wc will usc in the following section for constructing a Con- 
served Energy-like quantity. 

6. Testing spacetime geometry by interference experiments 

In Sect.2.2.1, we had dis('usscd the CXl)erimentally verified interference effects 
to lowest order. Base(| on results of Sect.5.4, we arc now in a position to continue 
in a more rigorous f~tshion in order to in(:ludc l)ossiblc curvature and torsion effects. 
This can be done using ~t WKB-;q)l)roximation of the Dirac cqmttion [Audretsch and 
Lgmlnerzahl (1983)] or by deriving a Hamilton operator  tbr the energy in a station- 
ary spacetime using the encrgy-mornentum current of the respective field. This last 
mentioned procedure mainly relies on Lihnmerzahl (1992) using unpublished results 
of Hecht (1986) ~ui(1 of Hehl. M(:Crca. Miclkc, ~md Nc'eman (1989). For other  recent 
work one lm~y consult H , ang  (1992). 

6.1. C o n s e r v e d  e n e r g y  

Let Us take tile H~uuilton Ol)Cr~tor method which describes the energy of tile 
considered quantum system iu vt curved sl)acetime t'o1" rotating and acceler~ting inter- 
ferometers. We start  from the general material Lagrangian (5.3.1), which is minimally 
coupled to the gravit;d, ionM fiehl. We sui)pose theft the mat ter  field equations (5.4.5) 
are fulfilled. 

We assume the exist, cn(:c of ~ symm('try of sI)acetimc, that  is, of a Killing vector 
= ~ e ~  which fillfills the symmetry  conditions 

L:(.q = 0. L:(F(f  = 0. (6.1.1) 

We introduce the al)brcwttions D,, := e,,:JD and D lj := gl~'~D.y and the transposed 
connection ~ j3  :__ Fj~  + e~,:jTt~ together with its cowtriant exterior derivative /9. 
Furthermore,  we note for later use 

D¢~ f~ = D( , (  l - ~ J I ( , f  . with K J  ~ := F,_~ - F J .  (6.1.2) 
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Here K a/3 = - K  [~'* denotes the contortion of spacetime. Then the symmetry  condi- 

tions (6.1.1) can be rewritten as 

/}{~{~} = 0 or B{('{ '~) = 0. and DS,~{ ~ = - { J R J .  (6.1.3) 

Note that  the la:st relati{m is equivalent to £.{K{, fJ = 0. 

With these preparations wc can find the energy expression g according to 

dE = 0, 8" := ~ ,., + (z),.,~) f~, E := g = cons t . ,  (6.1.4) 

where B~ and r ~  denote the material nmmentum and sl}in currents of (5.4.7) and 
(5.4.8), respectively. The conservation law dg = 0 can be provcd by applying the 
Noether identities (5.4.6) and the synnn(.'try conditions (6.1.3). We always integrate 
over a space-like hyl}ersm'faee )2. 

The transition to {lllalltlntl mechani('s is a{:hieved by defining a scalar product by 
means of a eonserw.'d quantity. A{:{:ordingly, we a{hlitionally assume the Lagrangian 
to be invariant against, ltha.se transforlnations. This yields the conserved quantity 

dj = 0 j(.& ¢. x ) : =  4' A OD.4--~, Q = .  j ( ~ , g , , x ) .  (6.1.5) 

This construction will allow the definition of an energy operator in Sect.6.2. 

An a siml}h.' example, we display the results for a Dirac field. Its Lagrangian 
depends only Oll the ,axial torsion. 
currents we find. resl}ectivcly. 

i 
2~ = ~ {.~ *'/D(,.~/,- Do:'~ '7'4'), 

For tile momentmn, tile spin, and the Dirac 

1 

r T = - i ' l l ,  {*'/,a~'fj} 'g,, j = - ' ¢  i*T~b, 

(6.1.6) 
where • denotes tile Hodge star and 7 := % ' 0 "  the Dirac matrix 1-form; nmreover, 

6.2. H a m i l t o n  o p e r a t o r  

Explicitly, we introdu('(: a s{:~tla, r product by means of the current j of (6.I.5): 

< '~q I'¢'2 > : = / ~  j('&,'¢,2,:c}. (6.2.1) 

A elassic~d field observable A,:l := .]'~ j('~,Ad'4'~ :r) is identified with the expectation 

value Aqu of a (luantmn measurement Aq, = < '4' I-A,,u I"/' > = .f~j{.&Aq,,.¢,,x). 
Here Aqu denotcs the position representation of the quantum operator .Aq,,. This 
identification implies Aq ,  = A d .  
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Therefore the energy operator  7/. using also (6.1.4), can be defined according to 

= + + (6.2.2) 

where we int roduced the I)rojcct ion tensor l,',~f~ :-- 6,{~ - 'n~,n f~ of the hypersurface E 
with n ~ its normal. We can id(mtify 'nf~Eij ms the energy flux density and ka ~ Ep 
as nmmentum flux density. Then the corresponding terms in (6.2.2) can be assigned 
to a suitably symm(,trized Ol)erator exI)rcssion ~{~1 c,,,iZ~.,~L{O}- and 1-1fa2(',, 7~ajl in the 
conventional way. Moreover. wc assign to the sl)in flux density ~'~ the operator  safe. 
This yields the symmetrizcd Hamilton Ol)crator 

7 / =  ~ { ~ .  ',,.,,7-/0 } + ~ .7 )}  + ( /~( ,~13) .¢ ,  . ( 6 . 2 . 3 )  

Each term in this Hamiltonian is hcrmitian by construction. Note that  the compo- 
nents of the canonical spin (:urrent describe the spin flux density, the spin density, the 
energT-dipole-momeut flux density, and the cnergy-diplole-moment density [cf. Hehl 

(1976)]. 

According to (6.1.2). th(, l;L~t, term in (6.2.3) spli ts into ~ spin-contor t ion term 
and a coupling of the ,spin to th(: kinematical 1)roi)crtics of the,Killing field ~ the 
trajectories of which btt(:r on will b(, idci~tificd with the tr~@(:tories of the different 
pieces of the iuterii,rolnet(,r. 

The  velocity 'u, i of th(:se l)i('c('s is 1)roportional to the Killing vector (i  = e x ui., with 
X as the gl'avi-stationary l)otential. The  projectiol~ tensor h{ = 6{ - u . , : u  .i transforms 
the vorticity O[.iu.i ] in(;o the loc;d rotation co.ly := hkh~'O #u~ Eventually, the 'Christof- . ~ [ ,  ]. 

{} 
fel' curl entering (6.2.3) can b(' decomposed ~wcording to Dl.i.~j] = eX(wi~ + 2a[.iu~]), 

1} 
where a,: = 'u, ~ D.i',,.i = -0.iX denotes the accclenttion of the Kiling field. Consequently, 
the spin of the m~tt(:r w~tv(: (:ouI)l('s to th(:, acccl(,r~tiol~ an(l and to the rotation of the 
interferomcter. 

In particular, for the Dinm case the H,mdltoni~m (6.2.3) re~ds 

• i • • 1 { }  • { }  " 8 7-/o = m?"n . i  + 2 7['7J1 7)in'i + ~Di'r~.", 7).;. = k i J D j ,  s ''J = 7[t7 jl. ( 6 . 2 . 4 )  

As special case we recover tile Hamilton oi)er~tor in fiat Minkowski space. There,  
": :r .i with = - w j i  leads to the mo'st genend Killing vector fichl (~ = b ~ + co .i co'::/ 

~ =  l{t,"+,~,.'Z. ~,,}'J. ,- (;, + a )  .fi'J., + ~ .  (Z; + S ) ¢ ,  (6.2.5) 

i ,,.i and tit(', 3-rotation a~ ~ - e  ':./k: ¢Ojk'll, 1 and g ~ co~'nJ with the 3-aeceler,ttion ~ ~ ca .j 
[see LSanmerzahl (1991) and Hehl & Ni (199{})]. 
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6.3. P h a s e  s h i f t  

In an interh;rcnce exper iment  the ma t t e r  field is localized, that  is, it is different 

from zero only within a coml)~mttivcly slmdl region. Hence, in (6.2.2) and (6.2.3), we 
can ~pproximate  1)oth, the Killing vector, which represents the external gravitat ional 

field, and its deriw~tive / ~ #  by a Taylor expansion. At the beam split ter we may 
choose the origin O of our coor(lilmtc system. The  center of mass of the ma t t e r  wave 

packet, the motion of which we will follow up, will be denoted by C. The  difference 
C ¢) (;  

'vectors '  A x  := x -- x, 6:c := x - :c ~re defined to l)c tangent to the hypcrsurface E: 
AxJn  = 6xJn = 0. Then tit(: T;tylor expansion around O reads, if we use the relations 

(6.1.3): 

(} (~ o I I  , ,~ i  # 
~"(x) = ~('(~i! + (A:r, + (5: , ' ) ] (D()(x)  + A:/-J~JB.# (::)6x + . . . .  (6.3.1) 

( ~ , J b C ) ( x )  - ~ • " ° ~ ': = (e(dDC)C;:) + (A:,. + ~:,.)]@,.)j~,~ ( z )  + . . . .  (6.3.2) 

(} 
In (6.3.1), we used the Christoffcl derivative D since, in comparison with D, only 

higher order derivations ~tre expected to arise in (6.2.2). Moreover, according to 
(6.1.3)2, the Christoffcl dcrivatiw: is api~ropriate for the cxp~msion of ~. Consequently, 

(6.1.3)3 motivates  tit(: nsc of D in exl)~mding/~{. In (6.3:2), R,_,#(:~;) will be replaced 
by R(~#(~:), since R,,: H. in the interf(:ronlctcr region, is z~ssmned to be a slowly varying 
field. We also neglect 1)ro(htcts of the form b'z R'r. 

We subst i tu te  (6.3.1) ~m(l (6.3.2) into (6.2.3). Then,  to first order in the dimension 

of the extension 6x of the field and in the dist~mcc Am, the Hamil tonian reads: 

? / =  @ c ) J ' , ~ , ~ o  + (D,. ,~ t )(:r) A:,:'-~.,l~ ~ o  + 

I}  ~ ,, i 
+ A:,:] ( q  R,./ )(:,:) ~ (~:~:". "",,~o } (6.3.3) 

+ d'(:~) ~,: +(D~W )(:~) A:r ~' 7),~ + ~(,~:r. ~ }  

1 
+ A:~:J (~] n,_/)(:,:) ~ (~:,:'.':. ~ }  

, "{}  -, # o - ( ~ ]K ,~ ) ( . ~ ; )  + . . . .  + .~p / (D~C) ( : , , )  r~ ', A:,:](~]~.~, ) 6 @  + 

We neglected products  of the contortion with the rot~tioll or the acceleration, respec- 

tively. The  results of this and the last sc(:tioll were a(:hievcd r(x:ently, a more detailed 
analysis will bc 1)resented in a forth(:oming 1)ublication. 

Our  procedure is Csl)ecially al)l)ropri~te for cwduating interference exi)eriments. 
If we are going to describe an a tom by such at ma t t c r  fiehl and if the external  field 
is not so strong as to be able to extnu:t  an electron fi'om an atom, then the ma t t e r  

field is always localized. The  Ol)crator 50,, will be interpreted as momentuni ,  1 (~ " -  - j [ ~  , - -  

½{6xa, T)#} as orbital angular lllomentuln, c(~ : =  's~,~']~ 0 a s  energy flux and ¢(~# := 
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½{Sx~,n~7-/0} as clmrgy (lil)olc-momcnt. Thcreforc L ('/~ := Ax['-*79/~1 represents the 

angular nmmentnm and E "q~ := Ax["~ t~] the energy dipolc-monmnt of the center of 

mass with respect to O. Fur thc rmorc  j'~[~ := l'~[~ + ~'[~ + s~'~ is the total angular 

momentum and energy (lipoh,-moment with rcspect to the center of mass C. Thus 

we find for the Halniltoniau: 

(~ o 7-t = ~ (z )  (c,_, + 7~,~) + ~, . . ,  

Sagnac accel. 

+ 

(6.3.4) 

j"~ ) (6.3.5) 

incrtial spin 
(:Oul)ling 

{} (~ ,, [~ o, 
A:,:J(~JR,/)(:,:) (l + e)~'~ + AxJ(~JR,, )(x) s~'~ -!~Jg~,')(/c) s~¢. 

ol'bital angub;" nlOlllcntuln- sI)in-c,~'vCd.ul'e spin-torsion 
I7{.ieln a l l n  c u r v a t u r e  

The first term on tile right hand side of (6.3.4) describes the energy and the trans- 
lationM monlentum of the field with respect to the Killing field. In the second term 

7~int, according to (6.3.5). the angular lnonmntuln and the energy dipole-nmlnent of 

the total system arc couph,d to the rot~ttion and acceleration of the Killing field. These 

terms result in the Sagm~c type effect and its time-like analogue, the COW-effect. 

Additionally, spin plus orbital angular momcntunl,  that  is, the total angular molnen- 
tuln j ,  also couple to rotatiou and ~tccelcration thereby generalizing the well known 

spin-rotation coupling [Schmu tzer (1973): Collier (1977), Audretsch and L~lnmerzahl 

(1983), Mashhoon (1988), Held & Ni (1990), L~hnmerzahl (1991)]. The subsequent 

terms mediate the COUlfling of the orbital angular inomeutum to the Riemalmian cur- 

vature as well ~ts that of the sl)in of the mat ter  fichl to the (total) Cartan curvature. 

The last term exhibits an explicit coupliug between the m,~terial spin current to the 

contortion tensor. Note that only the sl)in cttrrent 'feels' torsion w h e r e ~  all orbital 

terms react only to the Ricmamfian curwd.ure~ as worked out by Yasskin and Stoeger 

(1981). 

For a pure space-lilee spin currcnt (as in the case of Dirac matter)  we introduce 

a more convenient notation by relating '~t~ ~ ~" w(~/3 ~-~ o3. a ~ ~-~ 5. ~ J K ,  ~ ~ / f ,  
and Ax ~ £. Then wc flu(|, see Table 2~ the lowest order inertial, curw~ture, and 

torsion effects of the mat tc r  field Hamiltonian (6.3.4). 

The Hamiltml Ol)Cnm)r (:~ul I)e used to calculate the outcome of an interference 

experiment with an interfcrometcr of small extension. A particle bealn is coherently 

split and brought to illtcrfcrclwe after having travelled along separate paths. The  
interferometer is assulned to travel along ~t Killing trajectory. For describing such 

experiments,  the scmi-clmssk:~d al)proxim;~tion is appropriate. Accordingly, we assume 
that  the field equation 5L/5¢ = 0 possesses an eq)proxilnate solution of the form 

.~b ~ qoexI)(~S), with S ~Ls the classic~d phase. Then, in the classical limit, the phase 
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shift for one round trip is given by [see Anandan (1977), Audrctsch and LSanmerzahl 

(1983)] 

5(I) = ~ .  ( c - X E  ui dx  i + P,~ d'c ~) ,~ ~ Eintdt ,  (6.3.6) 

with a = 1, 2, 3. The energy E is the eigenvalue in 7-/'4' = E ¢ .  The expression "tzidx i 

is to be calculated according to the particle's group velocity, and /5 is the canonical 
momentum. Because, E is constant by construction, we can simplit~¢ (6.3.6) somewhat: 

.(~ i c - X E u , i  t x  = E e - x  wii d A  ij 
, . 

(6.3.7) 

However, it turns out to be very useflfi in sonic experiments (with spin-rotation cou- 
pling and spin-torsion coupling) to Clfforce a spin-flip after splitting and before re- 
combining the mat ter  wave [sec Mashhoon (1988)]. In these cases E can be extracted 
from the integral only for certMn parts of the path. 

m (g. 2) 

-c~ .  

/7- (g. :~) /7 / (2m) 

~.  (d x if) / (4.,,,.) 

{} 
:rJ ~J/~,fl (1 + e)'f~ 

=J d n J  ~ s")~ 

K .  S = CJ I i j  ~ S %  

R.cdshift (Bonse-Wroblewski --* COW) 

Sagnac type effect (Pagc-Werner et al.) 

Spin-rotation effect (Mashhoon) 

Rcdshift effect of kin. energy 

Inertial sl)in-orbit coupling 

Orb.ang.mom.- { }-curw~ture coupling 

Si)in-curw~ture coupling 

Spin-torsion coupling 

Table 2. Lowest order im.u'tiM, curwtture, and torsion effects for a 

general nlatter fie|(|. The interior product is denoted by J . 
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After having performed one interference experiment, we camlot uniquely at- 
tribute parts of the total phase shift to the wu'ious tcrnls in the Hamiltonian. Rather, 
we have to measure phase shifts under different physical situations. These can be 
realized, for example, by diflL'rent boundary conditions (adiabatically changing the 
orientation of the interfcrometer) or by dittLa'ently preparing the quantum system 
(selecting a system with a ccrtifin polarization or spin component). 

If we insert the energy eigenvahms into the fornml,us of Table 2, we find a phase 
shift for each terin. Wc dcnol;e t, he area of a COW-type interferometcr by A, its height 
by h, and its length by l. Then we have cxplMtly: 

'III, A 
6'I',,,:,: = h'l--~ a 

2 m  ~ . ,  
6'I's~,g,.,~ = h--:- 

2ltoi 
'U 

a,l 
5,I,  . . . .  = ~ . I  

lh," { } ,.~ 

6~I~ . . . .  = 2 b y  Roo.,.,' . ]" f j  

lb. a 
- -  _R f l  S ~': 8<1, ..... 2h.u .o ..... fl 

]'tot 

11 
,02 

6~Ih.od = ~ &I,~,:,: redshift of kinetic energy 

The total phase shift is the sum of all of these contributions: 

acceleration effect 

Sagnac (or rotation) coupling 

spin-rotation coupling 

inertial spin-orbit coupling 

orb.ang.mom.- { }-curvature-coupling 

spin-curvature-coupling 

spin-torsion coupling 

6 ~  = 6~:~acc + 6~I~s~ ,~,,a,: + 6~IL~-,. + 5~I~ s - o  + 5~I~o-c + 6~IL~-,: + ~IL~-t  + 6~Ih.ed + . . . .  (6.3.8) 

Here lLoL is the total length of the particle's path in the interferometer and J 
and S are tile eigenw~lucs of the total angular monmntmn (with respect to the center 
of nlass) and the spin angular lllOlllClltlUll, respectively. Tile other terms ill the 
Hamiltonian do not contribute to the phase shift. The spin-rotation, the spin-orbit, 
and the spin-torsion pha.se shifts are only nontrivial, provided the particle's spin had 
been inverted shortly after splitting and, agaim shortly before recombining the particle 
beam [M~hhoon (1988)]. The inertial effects have also bccn derived by Hehl & Ni 
(1990) by transfornfing the sp(:cial-rclativistic Dirac equation into an accelerated and 
rotating frame. For the Slfill-CUl'vature phase shift we oriented the interferonleter in 
such a way that  the eovector ~] ~.~_,~ ~30,.~o fl has the same direction tLs the acceleration in 
the COW-c~se. 

The phase shift 6(I) ...... is t.hc leading contribution caused by the redshift of the 
energy. Note that the inertial sl)ilx-orbit <Oul)ling does not depend on the mass nor 
on the velocity of the l~arti(:le, but only on its sl)in. The r(.unaining terms, up to now, 
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have not yet been experilncntally verified. If we employ in an atomic interferometer 
atoms of atomic weight 40, intrinsic spin 1: and velocity 0.1 re~s, then, for an effective 
interferometer area of about 1{} -4 m 2, the following phase shifts are of the order 
5Os-o ~ 10 -20, 5(I~ .... ~ 10-25. Thus they arc not measurable today. 
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